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Abstract- Product lines engineering uses Feature Models (PLMSs) to represent the correct combination of fezd
(FMs) as a notation to represent variability and

commonality in families of products. One of the wélknown
issues of FMs is that they may have defects that rra
drastically diminish the benefits of the product Ine
approach. Two of these defects are dead features afialse
optional features. Dead features are features absefrom
any valid product of the product line. False optioal
features are features declared as optional but acally
required in all valid products. These two types of dfects are
undesirable in FMs because they give a wrong ideaf o
domain that represents the FM. Several techniques
documented in literature help to identify dead andfalse
optional features. However, only few of them tacklethe
problem of identifying the causes of these defectBesides,
the explanations they provide are cumbersome and ha to
understand by humans. In this paper, we propose an
ontological rule-based approach to (i) identify ded and
false optional features in FMs; (ii) identify certan causes of
these defects; and (iii) explain these causes in toeal
language. Moreover, we propose a collection of rudethat (i)
formalize some cases that produce dead and falsetiomal
features; (ii) find the FM’s elements that causesazh defect;
and (i) explain why a feature is dead or false ggonal. This
collection of rules helps modelers to correct the efects
found in FMs and helps prevent the occurrence of e ones.
We illustrate our approach in a reference model fron
literature. A preliminary empirical evaluation of our
approach, using a benchmark composed of 31 FMs oizes
up to 150 features, shows that the proposal is eéfive,
accurate and scalable.

Keywords
Feature Modes, Defects, Ontologies, Software
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. INTRODUCTION

that represent valid products.

Feature Models (FMs) are a common language to
represent PLMs in order to describe the featurestlagir
dependencies for creating valid products [3]. FNaseh
also proven useful to communicate effectively with
customers and other stakeholders such as marketing
representatives, managers, production engineestersy
architects, etc. Consequently, having FMs thatewbiy
represent the domain of the product line is of manant
importance to the success with the SPLE production
approach.

However, creating models with features that colyect
represent the domain described by the model igrivil
[4]. In fact, when a FM is constructed, defects ntey
unintentionally introduced. Dead and false optional
features are two types of defects directly relatedhe
semantic of FMs. A feature is dead if it canngbey in
any product of the product line [3]. A feature &Esk
optional if it is declared as optional, but it appein all
products of the product line [5]. Due to the abitif FMs
to derive a potentially large number of productey a
defect in a FM will inevitably affect many produdtthe
product line [6].

Numerous researches focus on identifying dead and
false optional features in FMs [3], [5], [7—10]. Hets
approaches focus on identifying dead and falseopali
features and identifying the causes that produeseth
defects [11], [12]. Some others works propose exsing
ontologies to represent FMs [13-15] and others gsep
using ontologies for identifying defects in FMs {18)].
However, few researchers have addressed the praiflem
identifying the causes that produce these defents a
explain them in a human understandable languags. Th
means that once defects are found it is necessary t
manually inspect models to look for why the defects

A Software Product Line (SPL) is a family of retite occurred. Once engineers know why defects occurred,
software systems with common and variable functionf€y can try to fix them. Our observation is thais tis a

whose first objective is reusability [1]. Extensinasearch

cumbersome task. Indeed, looking for the causes of

and industrial experience have widely proven thedefects is about as complicated as looking for asfe

significant benefits of Software Product Line Eregring

themselves even when the defect is already known.

(SPLE) practices. Among them are: reduced time tdherefore, we believe that it is of paramount intaoce
market, increased asset reuse and increased seftwd® Solve this key problem if we really want FMs
quality [2]. SPLE usually uses Product Line ModelsVerification methods to be effective in an industontext.



Our general goal is to find a generic techniqué with
point out the cause of various kinds of defectpmuuct
line models specified with different notations. this
paper, we propose a first step to achieve this.doal
particular, we propose an ontological rule-basqar@grch
to analyze dead and false optional features in Fg,is:
identify features of a FM that are dead or falséomgal,
identify the causes of these defects, and explaith e
cause in natural language.

We hope this information helps product line engisee
to avoid same mistakes in future work, and to ustded
why dead and false optional features occur [12]].[2

Our original contribution can be summarized as

follows:
1.

causes of these defects; and (iii) creates expdtanrzat
in natural language about each detected cause.

We propose a framework that (i) identifies dead and
false optional features in FMs; (ii) identifies the

Table 1. An example of FM using this notation is
presented in Figure 1.

TABLE I TYPES OF DEPENDENCIES IfFMS

Notation

:
]

Type of Dependency
Mandatory [3]
Child feature B should be included in all valid
products containing the parent feature A and
vice versa.
It a feature is mandatory and all its ancestors are
also mandatory, then, this feature is a full
mandatory feature [21].

Optional [3]

Child feature B may or may not be included in
valid products containing parent feature A.
However, if feature B is included in a product,
its father A should be included too.

Group cardinality [22]
Represents the minimum (m) and the maximum
(n) number of child features (B...C) grouped in

2. We construct aFeature Model Ontologyand we a cardinality (<m..n>) that a product can have
formalize—using first-order logic—six rules for when the father feature (A) is included in the
identifying dead features and three rules for product. If at least one of the child features is
identifying false optional features. Each rule de§ a included into a product, the father feature
case in which a feature is dead or false optiomal. SRZ‘;“JﬁeZe['B?C'”ded too.
that way, we know the causes t.hat origin ea(.:h tiefec Feature B should be included in valid products
and we build the corresponding explanation. We[ » |-—-» & || with feature A. This dependency is
defined these rules based on our experience and on unidirectional.
the rules found in literature [9]. Excludes [3]

3. We developed an automated tool to implement our_* J¢--~ ¢ | | Features A and B cannot be in valid product at

approach. The results of our validation show that o

same time. This dependency is bidirectional.

approach is effective and scalable until FMs of 150

features.

This paper uses an adapted version the Graph Rroduc

The remainder of the paper is as follows. Section 1Line (GPL) [23] as running example. The resultingdel
gives a brief overview of the necessary concepts fdS Presented in Figure 1. We used this exampleusec
understanding the framework presented in Sectidn [11S Well-known in the product line community, andias

Section IV presents the implementation detailstiSed/
presents the evaluation of the precision, scatgbéind
usability of our approach. Section VI presents tegla
research. Finally, Section VIl presents the conghsand
suggests future research directions.

Il.  GENERAL CONCEPTS

A. Features Models

Feature modeling is a notation proposed in [3]aas @f
their method for performing a domain analysis ofgibole
products of a target domain. In the SPLE, featuiented
domain engineers use Feature Models (FMs) to reptes
commonality and variability of a target domain. &M
show how the domain features are related and sbave s
trade-off decisions that must be made for creadinglid
product in the domain of interest [3].

Under this notation, a feature is a distinctivemeat
that directly affects final users. Each featura isode in a
tree structure, and the model dependencies aretetire
arcs. The tree structure represents
organization of the features. The tree’s root & #M
represents whole product line and therefore itig pf all
valid products of the product line.
represented by a non-root node can be associatedawi
product only if the feature represented by theefatiode
is associated with the product too. The elementthef
feature notation that we use in this paper areepttes in

proposed to be a standard case for evaluating prdide
methodologies [23]. In order to illustrate our apgorh, we
intentionally introduced 8 dead features (cf., ARE7,
AF11, AF12, AF13, AF14, AF15, Connected) and 3€dals
optional features (cf., AF1, AF9, AF10) into thegimal
model. We used 15 artificial features and 25 deperciés
to produce these defects. All features and depemeen
have a name for easier identification. We idertifie
artificial features with a capital AF, and artifiti
dependencies with a capital AD. In addition, wentfeed
original features of the model with their namesd ave
used a capital OD to build the name of original
dependencies.

The members of the GPL are graphs eifbiected or
Undirected their edges ar&/eightedor Unweighted and
their search algorithms are breadth-first sea®BRY or
depth-first search OFS). All products of this FM
implement one or more of the following search
algorithms: Vertex Numbering NUmbe}, Connected
Components  Qonnectell Strongly Connected

hierarchic&fomponents StronglyCol, Cycle Checking Cycle,

Minimum Spanning Tree MST) and Single-Source
Shortest Path Shortest Moreover, this FM has

Each featuredependencies that limit the valid combination cftfees

previously described. For instance, tMST algorithm
requires Undirected graphs (cf., OD21) andVeighted
edges (cf., OD20), an&tronglyConalgorithm requires
Directed graphs (cf., OD4) and tHeFS search algorithm
(cf., OD17).
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Figure 1. GLP Feature Model based on the one proposed in [23]

B. Defects in Feature Models

Defects in PLMs are undesirable properties tl
adversely affect the quality ¢fie mode [8], [24]. In this
paper, we are interested in two comi types of defects
on FMs Dead features and false optional featL

A feature is deadvhen it is not present in any va
product of the product ling], [9], [25], [26]. When a FM
has dead features, the model is not an acc
representation of the domain [4]n fact, if a featur
belongs to a FM, the feature ilmportantin the domain
that domain analysts want teepresent. Therefore,
should be possible to incorporate that featuretifeast
one product of the product line [4].

|A feature is false optionélit is declared as optional
the FM, but it is required in all valid configuratiof[5],
[9], [11], [12]. This defect also gives a wrong idea
domain that represents the FM.

Generally, @éad and false optional featu arise when a
group cardinality is wrong defind@7] or when the FM
has a misuse among thdependenci¢ that relate its
features [4], [5], [9]. For instancéf a full mandatory
feature requires an optional feature, this optideature
becamdalse optional [9].

Ontologies have proven to heseful for dealing wit
defects in FMs. For instance, [(b6], [17] authors use the
semanticrelationships between the ontology concept
define a set of rules to identifgefects relatecto the
conformance checking [6] of the FMs.g., identify if a
feature is required and excluded at the same tion
another feature). These rules allawthor: to classify the
ontology individuals (features)hat cause each defe
Noorian et al also use ontologies to identify and
defects related tehe conformance checking of the F
[18]. In particular, theyuse the Pell[28] reasoner for
identifying defects in FMgepresented wittdescription
logic.

I1l.  PROPOSEDSOLUTION

The framework proposed in this pa is presented in
this section through two sugections. The first or
presents how we construct theature Model Ontolog.
The Feature Model Ontologyepresents concepts of
meta-model of FMsThe second one prese the tool that
we callDefect analyzerThis tool identifie dead and false
optional features in FMs, identifiés caues and explains
in natural language why these defects or An overview
of our proposaframework is presented in Figure
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Figure 2. Proposedrmework overvie

A. Feature Model Ontolo¢. How to built it

An ontology is a formal explicit specification fa
shared conceptualizatid@9], [30]. In the same way that
FMs, ontologies heldo identify and deéne the domain
basicconcepts and the dependencies among.

Ontologies comprises classes, properties, contdr
and individuals [31]. Classese the rain concepts related
to the ontology domainPropertie are the data-type
properties or object properties. Object propertieisite
ontology individuals among them, whereas -type
properties rel& ontology individuals with concre
values, for example, an integer va Constraints describe
the restrictionghat individuals mussatisfy to belong to a
class; and individualsepresent objects in the domain
interest. In this paper, we usontologies to build our
Feature Model Ontologyct. Figure 3).
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The Feature Model Ontologyrepresents the FMs explanation in natural language for each identifiadse.
concepts in the form of ontology. This represeatati The Defect analyzeris composed of three parts: the
allows us to exploit g the semantic relationshipgoag transformer the identifier of defectsand theexplainer
the concepts involved in FMs. For instance, we ask  Following sub-sections explain and give detailseath
for features that have the same father, or featinstsare one of these modules.
related by mandatory and exclude depethe sameaties 1) Transformer

same time. . Transformer module is the responsible of populating
We constructed thEeature Model Ontologysing the  the Feature Model Ontologwith the elements of the FM
guide to construct ontologies proposed in [32], ando analyze. Populate an ontology consists in argati
adapting the UML-based FM meta-model proposei)in individuals in the classes of the ontology. Firtig
(cf. Figure 4). We separate the meta-model diessture  Transformerreads each element of the input FM, and
in the ontology classeNotRootFeatureand RootFeature  second, it creates one individual in the correspund
with the aim of representing in the ontology thaFl  ontology class and fills the properties of eachividdial.
only has one root feature. In addition, in tReature In our populated Feature Model Ontology FM
Model Ontologythe meta-model classes correspond t04gpendencies are individuals of one of the follgin
classes of the ontology; the dependencies betwesta-m antology classesdpt i onal , Mandat ory, Requi r es

model classes are represented as ontology objeg d Excl udes. The class in which th&ransformer

properties; and the attributes of tlgoupCardinality creates each individual depends of the tvpe of
meta-model classes are represented as ontologiyuiata in the EM. For instance d%pen dency 0%02 (cf%))/

roperties. Besides, the inheritance dependencres . L
{Ohep meta-model  classes are reprlgsented isg is an individual of thévandat or y ontology class.

dependencies. It is worth noting that we do notsizber All features of the FM are individuals by inheritenof
feature attributes in our ontology (nor in our FMetar  the Feature class. Moreover, the FM root is an
model) since attributes are not involved in the &&flects individual of theRoot Feat ur e ontology class, and all
in which we are interested in this paper. other features are individuals of thet Root Feat ur e

Since we use ontology classes and properties tontology class. For instance, in our running exay@PL
represent the FM meta-model, if an individual vietathe is an individual of thé&koot Feat ur e ontology class, and
conditions defined for the classes or propertieinduhe  Search is an individual of theNoRoot Feat ure
population process, the ontology becomes incomgisteontology class.

(this issue is beyond the scope of this paperisbedvered Transformerfills the properties of each individual that
in [6] and [18]). it created using information obtained from the ingtor

The use of ontologies to represent FMs is not riBw; instance, according to ouFeature Model Ontology
fact, there are several works that use ontolog@s tindividuals of ontology clasBependency (e.g.,R3 in
represent FMs because ontologies increase thsur running example) have the  properties

expressiveness level provided by FMs [13], [14]nét hasDependencySour ce (GPL) and
authors are motivated by the fact that the ontollgi haspependencyDesti nati on (Sear ch).

representation of FMs makes possible to verify H forth oth ts of thefect I
consistency between the feature model and its metgel encetorth 0 edr ;:omponlens 0 | SC a}nhayzr(]er
[18]. Even others are motivated by the fact that th _us],ce Featuref rl1\/lo e ; Onto Iogypopr)]u ated with  the
ontological representation allows inferring inteies information of the FM for analyzing the FM.

information regarding the FMs; for instance, obtain 2) Identifier of defects

sibling features [17]. Identifier of defects is the module that identifidsad

and false optional features and their causes in the
populated-eature Model Ontology

We define a set of rules that represent six spec#ses
of misuse among the FM dependencies that cause dead
features, and three specific cases that causedptsmal
features. Thus, when theentifier of defectapplies these
rules on the populatedreature Model Ontologythe
identified features are considered as dead or fgitienal,
{complete, disjoint} and each used rule is a cause that originatesi¢mtified
dead or false optional features.

The use of rules to detect dead and false optional
features is not new. For instance, Van der Masseh a
Lichter [9] define six rules to identify defects FODA
models (using a feature notation with group catdies,
as we do, these six rules become two because lmoolea
B. Defect analyzer dependencies can be represented using group

cardinalities). However, the approach presentedhia
paper considers these two rules and seven morenthat
identified through our academic and industrial eipee
working with FMs. For each rule, we (i) specify tteuse

Feature Model
20

groupCardinality

" optional || mandatory || requires || excludes I
In

Max

Figure 4. FM meta-model based on the one proposed in [6]

Defect analyzeris the tool of our proposal that
identifies and explains in natural language deatlfalse
optional features. In particular, it receives apuinthe
Feature Model Ontologyand the FM to analyze, and o4 5 general explanation about the defect; (iipigpéhe

produces as result the identified dead and faldmrog o E ot e (i :
features (if any), the causes of each defect anel orﬁUIe infirst-order logic; (iii) present an explaia



template; and (iv) present an example based in our. DeadSet: This set represents the collection of all

running example (cf., Figure 1). dead features of a feature model.
We describe each rule with one or more Horn Clauses .  Fa| seOpti onal Set: This set represents the
[33]. In our Horn Clauses, antecedents are conditthat collection of all false optional features of a FM.

must occur together for producing the analyzed agfe
and the consequent is that a feature is dead ee fal
optional.

Our collection of 9 rules intends to find and expltne
causes of dead and false optional features. Téterfite is ) )
about optional features that become false optiovian For the sake of presentation of rules, false option
they are required by full mandatory features. Téeoad features with the acronymO and dead features will be
rule is about optional features that become fafstional  referred with the acronymF.
when they make part of a group cardinality (wittiulh
mandatory father) having one or several dead featinto
the bundle. The third rule is about optional feasuthat

|Where
OpSet A FMset A DeadSet A
Fal seOpti onal Set < Model Feat ur esSet

Rule FOL an optional feature becomes false optional

become false optional when they are required byhemo when a full mandatory feature requires an optional
false optional feature. The fourth rule refers mianal ~ feature.

features that become dead when they are excludéalby Formalization

mandatory features. The fifth rule is about optiona .

features that become dead when they are excludéaldey vxe FMBet ., vy e OpSet:

optional features. The sixth rule deals with opion requires(x,y)- y € Fal seOpti onal Set

features that become dead when one of their am6&sto gyp|anation templateFeaturey is false optional because
also dead. The seventh rule is about optional fegttnat it is required for the full mandatory featurdn the

become dead when they require dead features. ghehei q y
rule is about optional features that become deaghvhey ~dependencyanmebependency(x, y) . _

make part of a group cardinality that has one eesé  Application to the running exampl€eatureAF1 is false
false optional features into the bundle. Finalhe hinth  optional because it is required for the full maodat
rule refers to optional features that become dehdnw featureSear ch in the dependenc&D15.

they require features that make part of a grougicality
(with a full mandatory father), but the number efuired
features exceeds the upper bound of the groupnzditgi

In the rest of this section (i) we formalize instiorder

Rule FO2 an optional feature becomes false optional
when it is grouped by a group cardinality (with wl-f
logic each one of these rules: (ii) we presentténeplate mandatory father) having dead features. The featwrst

in natural language that each rule use to explercause be sele.cteq to satisfy the lower group cardinality.
of the particular defect that raise the rule—we tmat ~Formalization: . .

“explanation template”; and (iii) we show how thisle ~Z= group cardinality (wth father
can be used in our running example (cf. Figure iJe feature being full nandatory) of the
use the following first-order logic predicates, ¢tions FM at hand

and sets to formalize the rules as Horn Clauses: m =Lower bound of z

« requires(x,y): This predicate indicates that DFG oupSet = {Dead features that bel ong

feature x requires feature y. In our running exampl t © z}
requires (G cle, DFS). Not DFG oupSet ={ Feat ures not dead t hat

bel ongs to z}

GroupFeat ur esSet = { Feat ures grouped by
The group cardinality z}

, i D Where,

* ancestor(x,y): This predicate indicates that G gypFeat uresSet < Model Feat uresSet A

featurex is an ancestor of featuye In our running  nNot DFG oupSet = G oupFeat uresSet \
example ancestor (GPL, Wi ghted) and prg oupSet

ancestor (GPL, Search). Then,

» naneDependency(x, y): This function returns | Not DFG oupSet |= m -
the name of a given dependency that relates featuidot DFGr oupSet < Fal seOpt i onal Set
x with feature y. In our running example Explanation templateFeaturey is false optional because
nameDependency( GPL, Sear ch) returns it must be selected to satisfy the lower boumaof the
CD2. group cardinalityz to which it belongs.

« Model FeaturesSet: This set represents the Application to the running exampléteature AF10 is

e excludes(x,y): This predicate indicates that
feature x and feature y are mutually exclusives. |
our running examplexcl udes( BFS, F2).

collection of all features of a feature model. false optional because it must be selected tofgdtie

+ (pSet: This set represents the collection of alllower boundl of the group cardinalitpD24 to which it
optional features of a feature model. belongs.

e FMset : This set represents the collection of all full
mandatory features of a feature model. Rule FO3 an optional feature becomes false optional

when it is required by another false optional featu



Formalization:

vx € Fal seOptional Set, W e OpSet:

requires(x,y)- y € Fal seOptional Set
Explanation template:Featurey is false optional
because it is required by the false optional featur

through the dependencyneDependency( X, y) .
Application to the running exampl&eatureAF9 is false

Explanation template:Feature x is dead because it
requires the dead featuse The name of the requires
dependency isameDependency( X, y) .

Application to the running exampléeatureAF15 is
dead because it requires the dead feaAF&2. The
name of the requires-type dependencid 6.

Rule DF5 a feature becomes dead if it belongs to a

optional because it is required by the false option group cardinality and the number of false optional

featureAF1 through dependendD20

Rule DF1 an optional feature becomes dead when it iZ: group cardinality of the FM at

excluded by a full mandatory feature.
Formalization:

Vx € FMBet, W e OpSet:

excludes(x,y)— y € DeadSet
Explanation templateOptional featurey is dead because
it is excluded by the full mandatory featuwethrough the

dependencypaneDependency(x, y).
Application to the running exampleéDptional feature

AF11 is dead because it is excluded by the fuIINot FOGr oupSet

features is equal to the cardinality upper bound.
Formalization:

hand
n: Upper cardinality of z

FOG oupSet: set of false optional
features that belong to z

Not FOGr oupSet : set of features not
fal se optional that belongs to z}
GroupFeat uresSet = set of features
grouped by the group cardinality z
Where,

FOG oupSet < G oupFeat uresSet S
Model Feat uresSet A

= GroupFeaturesSet \

mandatory featur@F8 through dependenddD17. FOGr oupSet

Then,
Rule DF2 an optional feature becomes dead when it i$ FOG oupSet| = n - Not FOG oupSet &<
excluded by a false optional feature. DeadSet

Formalization:
vx € Fal seOptional, W e OpSet

excludes(x,y)— y € DeadSet
Explanation templateOptional feature is dead because
it is excluded by the false optional featurethrough the

dependencypanmeDependency( X, Y) .
Application to the running exampleéDptional feature

Explanation template-eaturey is dead because it cannot
be selected from its group cardinality since the upper
boundn of the group cardinality is attained with the
following false optional feature$OG oupSet .
Application to the running exampl&eatureAF2 is dead
because it cannot be selected in its group caitiinal
AD23, since the upper group cardinalityof AD23 is
satisfied with the following false optional feataré1.

AF7 is dead because it is excluded by the false ogdtiona

featureAF9 through dependendyD18.

Rule DF3. a feature becomes dead when one of itS

ancestors is dead.
Formalization:

vx € DeadSet, Vy < Mbddel Feat uresSet:

ancestor(x,y)— y € DeadSet

Explanation templateFeaturey is dead because, its
ancestor feature, is a dead feature too.

Application to the running examplezeatureAF14 is

dead becaus&F11, its ancestor feature, is a dead feature hat
too. Featureé\F12 andAF13 are also identified as dead anot her

features for this rule.

Rule DF6: an optional feature becomes dead if it requires
features that belongs to group cardinality, butrtheber
of required features is greater than the upper dadrnhe
group cardinality.

Formalization:

z: group cardinality (with father
feature being full nandatory) of the

FM at hand

n: upper cardinality of z

DFG oupSet: set of dead features that
belong to z

I ncl udesFeat uresSet: set of features
belong to z and are includes by
feature of the FM
GroupFeaturesSet: set of features
grouped by z

Rule DF4 a feature becomes dead when it require¥Vhere,

another dead feature.
Formalization:

vXx € Model FeaturesSet, Wy € DeadSet:

requi res(x,y)- x € DeadSet

I ncl udesFeat uresSet <
GroupFeat ur esSet < Model Feat ur esSet



Then, IV. |IMPLEMENTATION DETAILS

Yy € pSet, WX € GroupFeaturesSet: The method, ontology and rules presented above were
: implemented into the prototype tool calleDefect
includes(y, x) - xe IncludesFeat uressSet analyzerusing Java, and the JESS (Java Expert System
| I ncl udesFeaturesSet| > n -y e deadSet Shell) reasoner to execute queries in SQWRL [34]. The

. . . tool was tested with the Graph Product Line casdyst
Explanation template:Featurey is dead because it g5nq with 30 random FMs generated with  the

requires the feature(d)ncl udesFeat uresSet that BEnchmarking and TesTing on the analYsis (BeTTH] [3
belong(s) to the group cardinality Required feature(s) tool. Our approach was implemented in two stageshe
exceed(s) the upper boundbf the group cardinality. first stage, we used Protégé 3.4.8 for creating-tragture
Application to the running example: Feature Model Ontologyto represent concepts of the FMs meta-
Connect ed is dead because it requires the feature(s odel. In the second stage, we developed Diefect

. . nalyzer
Directed, Undirected that belong(s) to the group
cardinality OD26. Required feature(s) exceed(s) the ast(r)(I)IgSJ)s/: each component of tefect analyzenorks

upper bound. of the group cardinalitpb26. (i) Transformer It uses a library available in the

It is worth noting that aforementioned rules areSPLOT websitg for reading FMs in the Simple XML
interrelated. These relationships are present&igire 5. Feature Model (SXFM) format. Then, this component
In this figure, identification process begins witle dead uses Jerfato manipulate the ontology inside Java for
features found by rule DF1 and false optional fiestu creating individuals in th&eature Model Ontologyvith
found by rule FO1. Then, rules DF2, DF5 and DFéhe information of the analyzed FM. When the
receive as input the identified false optional dieas, and Transformerends populating the ontology, it creates a
identify dead features. Inversely, rule FO2 receies new OWL' file with the Feature Model Ontology
input dead features and identifies false optioealtufres. populated with the information of the analyzed Flte
Rule FO3 receives false optional features as igmat OWL file of our Feature Model Ontologpopulated with
identifies new false optional features, and rulés3@and the running example is available onfine

DF4 receive dead features as input and identify dead i) |gentifier of defectsit uses SQWRL to implement

features. The process ends whenlttentifier of defects & e proposed in the Section Ill. A SQWRL gquer

executes all rules and it does not find new deathlse . .
comprises an antecedent and a consequent expriessed

optional features. On the contrary, if new dead faisk )
optional features appear, thdentifier of defectsruns terms of OWL classes and properties. The antecedent

again all rules using false optional and dead featas defines the criteria that individuals must satisfy be
input to find new ones. selected, and the consequent specifies the indilgdio

3) Explainer select in the query results. In our approach, SQWR&
Once theldentifier of defectsdentifies dead and false classes and properties defined in tReature Model
optional features and their causes,BElplainerconstructs  Ontologyto query for information of the FM represented

explanations in natural language according to thle r as ontology individualddentifier of defectexecutes and
used to find each defect. In the explanation pmctse manipulates all rules from Java.

Explainerexecutes the following tasks: For the sake of space, we only present the sowde c
e It obtains the rule used to identify each falseof the first rule (i.e., FO1), in which full manday
optional or dead feature. features require optional features. Nevertheless,nine
. It takes the explanation template associated wit ules have a similar structure. The whole codevislable
the rule identified in the previous task. or download from Internét

» It fills the explanation template at hand with the

corresponding instances from the populated (1) Requires(?z) "

Feature Model Ontology (2) Optional (?w) ~ o o
It is worth noting that if a feature is involved imore Ei; ﬂgggggﬂggﬂggﬁﬁﬁLg?g'z"”gd"vvm'% A
than one rule, thielentifier of defecidentifies all different (5) hasDependencyDest | nat i E)n( 22, 2a) A ->
rules used to identify this dead or false optidieature. (6) sqwrl:sel ect Di stinct (?a) '
Consequently, theExplainer makes for each rule a
different explanation. This is the case B2 in our
example: (i) rule DF1 identifies that featur® is dead
because it is excluded by the full mandatory feakS8;
and (ii) rule DF5 identifies that featuF® is dead because
it belongs to a group cardinalityl. . 1> where one the
features of the bundle (i.e., the childrenFdf) is a false
optional feature (due to the dependeA&$). In that case, http://herzberg.ca.sandia.gov
the Explainerprovides an explanation corresponding to (i) http://www.splot-research.org
and another one corresponding to (ii). http://jena.apache.org

4 The Ontology Web Language (OWL) is a language tsed
describe the classes and dependencies betweengiasolFor more
information, please visit http://www.w3.org/TR/oglside/

5 https://sites.google.com/site/raulmazo/

Lines 1 to 5 define conditions under which a feaan
be considered false optional. Line 1 represents any
instance of the ontology clafRequires and line 2




Rule FO1 Rule DF2 Rule DF4
Full mandatory requires receive | False optional excludes ﬂdd‘\ receive | Requires dead
add——, [ \, (
) Rule DF5 e \ )
// receive. | Obligatory group cardinality with | //
receive All false | false optional features -add dd—
: . All dead Rule DFL
Rule FO3 optional
- features A Full mandatory
False op?tlonal features Rule DF6 _ J—add” excludes
requires / N\ /,eceive Optional feature requires features| Add /
S—T \ ! of obligatory cardinality \ eceive
\\ \\ Rule DF3
\ Rule FO2 receive \ Ancestor dead
add____ | Obligatory group cardinality with | “add g
dead features
Figure 5. Relationship among our collection of rules
represents any instance of the ontology cassi onal . “Feature COMODI N is false optional because it is

Ontology classesRequires and Optional are required for the full mandatory featureb ?in the
subclasses of the ontology claBspendency in the dependencyZ”

Feature Model Ontology(cf. Figure 3). Lines 3 to 5 use

properties hasDependencyDestination  and V. PRELIMINARY EVALUATION
hasDependencySour ce to link a dependency with  We assessed the precision, scalability and usalofit
its related features (cf. Figure 3).First argumeithese our approach with 31 models clustered as preseinted
properties is an individual of the claBspendency and  Table IIl.

the second is an individual of the cldssat ur e. Word Our preliminary evaluation was undertaken in the
COMODI Nin line 3 is an argument that takes the values ofollowing environment: Laptop with Windows 7 Ultirtea
individuals identified as full mandatory featureBhe of 32 bits, processor Intel® Core™ i5-2410M, CPB(R.
value of COMODI N depends of each rule (e.g., in rule DF2GHz, and RAM memory of 4,00 GB, of which 2.66 GB is
COMODI N corresponds to false optional features, but irusable by the operating system.

rule DF3, corresponds to dead features). Line @hés 1) Precision

consequent of this query, which consists in selgcthe We tested our approach in three steps. First, wifia
feature @. Note that the SQWRL rule to identify dead or that it did not generate false positives. Secorayerified
false optional features only selects in the coneefithe  that the proposed solution identified 100% of dead
false optional featurea?that satisfy the rule, but it does false optional features considered in our collectif

not select the dependencies related to the defaateach rules. Finally, if the FMs had dead or false opdion
obtained defect, th&xplainer executes another SQWRL features, we manually validated that explanations
query to get the necessary information to compteé&e corresponded to the case that produced the dafetthat

explanation, as follows: the filed spaces in the explanation templates
(iii) Explainer Once the false optional or dead f_eaturegcorresponded to real situation for each one ofitbdels.
are identified by the rules presented in (ii), Ebglainer In the first stage, we compared the dead and false

executes a new SQWRL query to get dependencies ap@tional features with the results obtained usimiV&
other features related to the defect at hand dhdh& [36] and VariaMos [37]. We found that our proposal
explanation template of the corresponding rule. Fofdentified the 100% of the dead and false optidealures
instance, the following SQWRL obtains the depenglencthat satisfied our rules, with 0% false positiver Ehe
and the features related to each false optiondurfea second and third stage, we made a manual inspeation

obtained from rule FO1. correctness over the running example and two
models(randomly selected) of each cluster. We fahat
(1) Requires(?z) A our proposal constructed correct explanations; ffey
(2) hasDependencyDest i nati on(?z, COMODI N) ~ corresponded to the cause(s) that originated ezfefetd
(3) hasDependencySour ce( 2z, ?b) - > Figure 6 presents the number of dead and falserati
(4) sqwrl:sel ectDistinct(?b) 7 features found in each analyzed FM.

5) sgwl:selectDistinct(?z
(5) sq (?2) TABLE II.

. . . FEATURE MODELSCOLLECTION BENCHMARK
Lines 1 to 3 define necessary conditions that must

satisfy individuals B and 2 to be selected in the query.
Line 1 represents any instance of the ontologysclas Number of 5 25 | 32| 50| 75| 100 150
Requi r es. Lines 2 and 3 define the features source amd_features

destination of the ontology clasRequires. Word Number of
COMODI Nin line 2 is the false optional feature found withh ~ models

the query presented in (ii). The consequent of this .
SQWRL query consists in selecting featute requiring | % gf reqlwcries 0| a0l 181 40l a0l a0l 40
the false optional featur€@OMODI N and the requires-type ?glasgssuhigs

dependency 2 from b to COMODI N. Thus, the

explanation corresponding to the rule FOL1 is devid.




2) Computational Scalability & (=] ® faie

In order to make performance measurement, we omete,) (b
L ; .
executed five times each of the 31 models, whicanse et LR
155 (31x 5) queries e
. . . Causes: FULL_MANDATORY_FEATURE_EXCLUDES_AN_OPTIONAL_FEATURE
The time measures presented 8] Flgul’e 7 are the Explanation:Optional feature AF2 is dead because it is excluded by the full
f the five executions of each model. ‘$-axi et - OEAD FEATURE T+
average o I ) . e . Feature:..... .AF11
corresponds to Computatlon time In ml”ISECOI’]dS)(th&t Causes: FULL_MANDATORY_FEATURE_EXCLUDES_AN_OPTIONAL_FEATURE
took the Defect analyzeto execute all the tasks of our Rbiiaties mutis AL uwai e dniamregin s |
approach, and X-axis corresponds to the number of || p&ie e
features of each model. According to results, preach e oitrca 2 A1 e oot e ane ¥ S TSRS e
took less than 5 sg (5000 ms) executing thefect o o T et o eretP G
analyzerin FM up to 100 features and took about two Causes. OPTIONAL FEATURE,NCLUDES FEATURES_OF OBLIGATORY CARDNALITY
1 1 pls 1
mlnutes On models Wlth 150 features E;glaé‘:“g:.g(FS;E?éul;ee%igss(c[::]d\i;@%%e;;use it requires the feature(s) Undirected Directed
__Regulred feature(s) exceed(s) the upper bound n of the group cardm_ahty 0D25
Figure 8. Snapshot corresponding to a part of the resultergésd
. Number or defects identified by model size from analyzing our FM running example
L
2 VI. RELATED WORK
£ = * Two collections of approaches for FM defects cause
-jg - identification can be met in the literature: thdbat use
S . . . ontologies to represent and reason on FMs andtiieeso
o .. . . From the first category, Wangt al. [19] propose
Z . * representing FMs and their constraints in OWL adyl
o & i' i | | L language. In their proposal, the authors represech
o w . s 0 0 10 140 16 feature as an ontology class, and each dependanay a
Ne features ontology property. Their study identifies inconersties
in FMs configurations and provides explanations for
# Dead features  ® False optional features inconsistencies. However, their approach does malyae

the FM itself to identify the shortcomings. Akbal.[17]
propose to use ontologies to represent FMs antitdiéei
their integration when they represent differentwgeof a

Figure 6. Number of defects identified by model size

Defectanalyzer time product line. Additionally, these authors descr®&RL
300000 (Semantic Web Rule Language) rules to validate mode
220000 . consistency. They define each situation that cseate
inconsistency as an antecedent, and the elemesutséd
’gmnnn S as the consequent. However, their research aims at
=2 A facilitating integration of different FMs, wheretsat our
£ . approach focuses on identifying and explaining deadi
= 100000 false optional features and their causes. Moredwes et
al. [15] propose to use ontologies to represent FMs in
30000 $ order to analyze their variability and commonaliyen if
. H_.:J}/"/r they use ontologies to represent FM, their appraach
o w4 e B W0 120 10 150 different to ours. They use ontologies to analyhe t

semantic similarity of the FM, whereas our approasbs

Ne features . . . S
ontologies to identify dead features and explairirth

Figure 7. Number of defects identified by model size causes. Nooriaat al.[18] propose to use descriptive logic
- to: (i) identify inconsistencies in FMs representid
3)  Usability SXFM; (ii) identify inconsistencies in products digured

In order to make more usable our approach, Wgom the product line; and (iii) propose possible
developed a graphic presentation of Dwfect analyzer corrections.  They implement their approach in a
Our tool receives a FM, the one selected by thewie  framework that uses OWL-DL to represent FMs ani the
the “Choose file” button, in SXFM format. Then, whe configurations, and Pellet[28] as reasoner. We alse
the user presses the “Analyze” button, Transformer SXFM to represent FMs and description logic to espnt
module, populating thEeature Model Ontologwith the  our ontology. However, we focus on identifying and
elements of the FM at hand. Then, the modldestifier  explaining dead and false optional features andamt
of defectsand Explainer process theFeature Model conformance checking [6] as Nooriahal.do. Moreover,
Ontology with the individuals of the analyzed FM and our approach could detect structural defects ifvamsfy
present results to the user. Flgure 8 Correspouda t (using the Corresponding Protégé’s function) the
snapshot of part of the feedback obtained fromtoal  consistency of the ontology after populating it.

when we analyzed dead and false optional feataresiti Regarding the second category, several works were

running example. For each found defect, our 109655a ¢rrieq out to automatically identify dead featutasd
what it corresponds to, the cause that originant] gives other defects) on FMs [3], [5], [7-10]. However nioof

the corresponding explanation in natural language. these works deals with identification of causes or
explanations of dead and false optional features.



Trinidad et al. [12] present an automated method forif they are applied with mandatory and false opion

identifying and explaining defects, such as deadufes
or false optional features in FMs. The authors sfam
FMs into a diagnostic problem and then into a caurst
satisfaction problem. They automated their approach
FaMa [36], an Eclipse Plug-in for automatic analysf
FMs. Their proposal identifies the dead features fafse

features.
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necessary to create such features. However, thgipach
works like a black box, hard-coded in FaMa, wheseru
cannot create new rules to interrogate the FM. d&ssi

explanations generated by FaMa are not in natural

language, but they are rather a list of dependeritiat
modeler should modify to remove the defect. Tha&
gives the dependencies participating in the defaat,it
does not explain the defect itself, which our applo
does.

In a more recent work, Trinidagt al. [11] use
abductive reasoning to identify dead features dradr t
causes. Unfortunately, authors do not provide aatgils
or even an algorithm to implement their proposal.

It is worth noting that FaMa finds and explainsesth
dead and false optional features that our apprdathot
identify. This is because we have not implementetha
cases to identify and explain all causes of deatlifes or
false optional features. FaMa identifies all cdsesause it
uses a constraint satisfaction approach to idemtédgad
features, false optional features and other defattSMs.
However, our rule-based approach is extensibla)atvs
us to explain in natural language why defects qcand it
allows us to analyze dead and false optional featwhen

FMs are void [3], three aspects that FaMa does not

support.

VII. CONCLUSIONS AND DISCUSSION

In this paper, we proposed an ontological rule-base

approach to analyze dead and false optional feat@er
defect analysis consists in identifying dead ant$efa
optional features in FMs, identifying certain cause

these defects, and explaining these causes in ahatur

language. To operationalize our proposal, we pre@os

OWL ontology for representing FM and we propose 9

rules that represent certain causes that produad de
false optional features and have associate an regida
in natural language. These rules were formalizefirst

order logic and implemented in SQWRL and Java. We

validated our proposal with a well-known case stadg
with 30 random features models with until 150 feasu

The approach developed in this paper represents an

innovative alternative to the ones found in litarat[3],
[5], [7-12], [16-19], because we not only identdgad
and false optional features, but we also identHgirt

causes and build explanations in a human comptessib

language. We believe that this information coulaidv
modelers take the same mistakes in others FMs. temwe
there are other cases outside of the scope optbosal
(e.g. identifying dead features when they are prediuor

mandatory features whose predecessor is an optional

feature). Indeed, it is necessary to continue ektenour
solution to identify with other rules dead and déals
optional features.

We are also interested

detected that many of our rules could identify viddels

in exploring dependency
between dead features and void models, because we

Sorbonne in France.
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