
HAL Id: hal-00913944
https://paris1.hal.science/hal-00913944v1

Submitted on 4 Dec 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Ontological Rule-Based Approach for Analyzing
Dead and False Optional Features in Feature Models

Luisa Rincón, Gloria Lucia Giraldo, Raúl Mazo, Camille Salinesi

To cite this version:
Luisa Rincón, Gloria Lucia Giraldo, Raúl Mazo, Camille Salinesi. An Ontological Rule-Based Ap-
proach for Analyzing Dead and False Optional Features in Feature Models. XXXIX Latin American
Computing Conference (CLEI), Oct 2013, Naiguatá, Venezuela. �hal-00913944�

https://paris1.hal.science/hal-00913944v1
https://hal.archives-ouvertes.fr

An Ontological Rule-Based Approach for
Analyzing Dead and False Optional Features in

Feature Models

L. Rincón*, G. Giraldo**, R. Mazo*** and C. Salinesi***
* Universidad Nacional de Colombia, Medellín, Colombia

** Departamento de Ciencias de la Computación y de la Decisión, Universidad Nacional de Colombia, Medellín,
Colombia

***Centre de Recherche en Informatique CRI, Université Panthéon Sorbonne, Paris, France
{lufrinconpe, glgiraldog}@unal.edu.co

{raul.mazo, camille.salinesi}@univ-paris1.fr

Abstract- Product lines engineering uses Feature Models
(FMs) as a notation to represent variability and
commonality in families of products. One of the well-known
issues of FMs is that they may have defects that can
drastically diminish the benefits of the product line
approach. Two of these defects are dead features and false
optional features. Dead features are features absent from
any valid product of the product line. False optional
features are features declared as optional but actually
required in all valid products. These two types of defects are
undesirable in FMs because they give a wrong idea of
domain that represents the FM. Several techniques
documented in literature help to identify dead and false
optional features. However, only few of them tackle the
problem of identifying the causes of these defects. Besides,
the explanations they provide are cumbersome and hard to
understand by humans. In this paper, we propose an
ontological rule-based approach to (i) identify dead and
false optional features in FMs; (ii) identify certain causes of
these defects; and (iii) explain these causes in natural
language. Moreover, we propose a collection of rules that (i)
formalize some cases that produce dead and false optional
features; (ii) find the FM’s elements that causes each defect;
and (iii) explain why a feature is dead or false optional. This
collection of rules helps modelers to correct the defects
found in FMs and helps prevent the occurrence of new ones.
We illustrate our approach in a reference model from
literature. A preliminary empirical evaluation of our
approach, using a benchmark composed of 31 FMs of sizes
up to 150 features, shows that the proposal is effective,
accurate and scalable.

Keywords

Feature Models, Defects, Ontologies, Software
Engineering

I. INTRODUCTION

A Software Product Line (SPL) is a family of related
software systems with common and variable functions
whose first objective is reusability [1]. Extensive research
and industrial experience have widely proven the
significant benefits of Software Product Line Engineering
(SPLE) practices. Among them are: reduced time to
market, increased asset reuse and increased software
quality [2]. SPLE usually uses Product Line Models

(PLMs) to represent the correct combination of features
that represent valid products.

Feature Models (FMs) are a common language to
represent PLMs in order to describe the features and their
dependencies for creating valid products [3]. FMs have
also proven useful to communicate effectively with
customers and other stakeholders such as marketing
representatives, managers, production engineers, system
architects, etc. Consequently, having FMs that correctly
represent the domain of the product line is of paramount
importance to the success with the SPLE production
approach.

However, creating models with features that correctly
represent the domain described by the model is not trivial
[4]. In fact, when a FM is constructed, defects may be
unintentionally introduced. Dead and false optional
features are two types of defects directly related to the
semantic of FMs. A feature is dead if it cannot appear in
any product of the product line [3]. A feature is false
optional if it is declared as optional, but it appears in all
products of the product line [5]. Due to the ability of FMs
to derive a potentially large number of products, any
defect in a FM will inevitably affect many products of the
product line [6].

Numerous researches focus on identifying dead and
false optional features in FMs [3], [5], [7–10]. Others
approaches focus on identifying dead and false optional
features and identifying the causes that produce these
defects [11], [12]. Some others works propose even using
ontologies to represent FMs [13–15] and others propose
using ontologies for identifying defects in FMs [16–19].
However, few researchers have addressed the problem of
identifying the causes that produce these defects and
explain them in a human understandable language. This
means that once defects are found it is necessary to
manually inspect models to look for why the defects
occurred. Once engineers know why defects occurred,
they can try to fix them. Our observation is that this is a
cumbersome task. Indeed, looking for the causes of
defects is about as complicated as looking for defects
themselves even when the defect is already known.
Therefore, we believe that it is of paramount importance
to solve this key problem if we really want FMs
verification methods to be effective in an industry context.

Our general goal is to find a generic technique that will
point out the cause of various kinds of defects on product
line models specified with different notations. In this
paper, we propose a first step to achieve this goal. In
particular, we propose an ontological rule-based approach
to analyze dead and false optional features in FMs, that is:
identify features of a FM that are dead or false optional,
identify the causes of these defects, and explain each
cause in natural language.

We hope this information helps product line engineers
to avoid same mistakes in future work, and to understand
why dead and false optional features occur [12], [20].

Our original contribution can be summarized as
follows:
1. We propose a framework that (i) identifies dead and

false optional features in FMs; (ii) identifies the
causes of these defects; and (iii) creates explanations
in natural language about each detected cause.

2. We construct a Feature Model Ontology and we
formalize—using first-order logic—six rules for
identifying dead features and three rules for
identifying false optional features. Each rule defines a
case in which a feature is dead or false optional. In
that way, we know the causes that origin each defect,
and we build the corresponding explanation. We
defined these rules based on our experience and on
the rules found in literature [9].

3. We developed an automated tool to implement our
approach. The results of our validation show that our
approach is effective and scalable until FMs of 150
features.

The remainder of the paper is as follows. Section II
gives a brief overview of the necessary concepts for
understanding the framework presented in Section III.
Section IV presents the implementation details. Section V
presents the evaluation of the precision, scalability and
usability of our approach. Section VI presents related
research. Finally, Section VII presents the conclusions and
suggests future research directions.

II. GENERAL CONCEPTS

A. Features Models

Feature modeling is a notation proposed in [3] as part of
their method for performing a domain analysis of possible
products of a target domain. In the SPLE, feature-oriented
domain engineers use Feature Models (FMs) to represent
commonality and variability of a target domain. FMs
show how the domain features are related and show some
trade-off decisions that must be made for creating a valid
product in the domain of interest [3].

Under this notation, a feature is a distinctive element
that directly affects final users. Each feature is a node in a
tree structure, and the model dependencies are directed
arcs. The tree structure represents hierarchical
organization of the features. The tree’s root of the FM
represents whole product line and therefore it is part of all
valid products of the product line. Each feature
represented by a non-root node can be associated with a
product only if the feature represented by the father node
is associated with the product too. The elements of the
feature notation that we use in this paper are presented in

Table 1. An example of FM using this notation is
presented in Figure 1.

TABLE I. TYPES OF DEPENDENCIES IN FMS

Notation Type of Dependency
 Mandatory [3]

Child feature B should be included in all valid
products containing the parent feature A and
vice versa.
It a feature is mandatory and all its ancestors are
also mandatory, then, this feature is a full
mandatory feature [21].

Optional [3]
Child feature B may or may not be included in
valid products containing parent feature A.
However, if feature B is included in a product,
its father A should be included too.

Group cardinality [22]
Represents the minimum (m) and the maximum
(n) number of child features (B...C) grouped in
a cardinality (<m..n>) that a product can have
when the father feature (A) is included in the
product. If at least one of the child features is
included into a product, the father feature
should be included too.

 Requires [3]
Feature B should be included in valid products
with feature A. This dependency is
unidirectional.

Excludes [3]
Features A and B cannot be in valid product at
same time. This dependency is bidirectional.

This paper uses an adapted version the Graph Product-

Line (GPL) [23] as running example. The resulting model
is presented in Figure 1. We used this example because it
is well-known in the product line community, and it was
proposed to be a standard case for evaluating product line
methodologies [23]. In order to illustrate our approach, we
intentionally introduced 8 dead features (cf., AF2, AF7,
AF11, AF12, AF13, AF14, AF15, Connected) and 3 false
optional features (cf., AF1, AF9, AF10) into the original
model. We used 15 artificial features and 25 dependencies
to produce these defects. All features and dependencies
have a name for easier identification. We identified
artificial features with a capital AF, and artificial
dependencies with a capital AD. In addition, we identified
original features of the model with their names, and we
used a capital OD to build the name of original
dependencies.

The members of the GPL are graphs either Directed or
Undirected, their edges are Weighted or Unweighted, and
their search algorithms are breadth-first search (BFS) or
depth-first search (DFS). All products of this FM
implement one or more of the following search
algorithms: Vertex Numbering (Number), Connected
Components (Connected), Strongly Connected
Components (StronglyCon), Cycle Checking (Cycle),
Minimum Spanning Tree (MST) and Single-Source
Shortest Path (Shortest). Moreover, this FM has
dependencies that limit the valid combination of features
previously described. For instance, the MST algorithm
requires Undirected graphs (cf., OD21) and Weighted
edges (cf., OD20), and StronglyCon algorithm requires
Directed graphs (cf., OD4) and the DFS search algorithm
(cf., OD17).

Figure 1.

B. Defects in Feature Models
Defects in PLMs are undesirable properties that

adversely affect the quality of the model
paper, we are interested in two common
on FMs: Dead features and false optional features.

A feature is dead when it is not present in any valid
product of the product line [3], [9], [25], [26]
has dead features, the model is not an accurate
representation of the domain [4]. In fact, if a feature
belongs to a FM, the feature is important
that domain analysts want to represent. Therefore, it
should be possible to incorporate that feature in at least
one product of the product line [4].

|A feature is false optional if it is declared as optional in
the FM, but it is required in all valid configurations
[9], [11], [12]. This defect also gives a wrong idea of
domain that represents the FM.

Generally, dead and false optional features
group cardinality is wrong defined [27]
has a misuse among the dependencies
features [4], [5], [9]. For instance, if a full mandatory
feature requires an optional feature, this optional feature
became false optional [9].

Ontologies have proven to be useful for dealing with
defects in FMs. For instance, in [16], [17]
semantic relationships between the ontology concepts to
define a set of rules to identify defects related
conformance checking [6] of the FMs
feature is required and excluded at the same time for
another feature). These rules allow authors
ontology individuals (features) that cause each defect.
Noorian et al also use ontologies to identify and fix
defects related to the conformance checking of the FM
[18]. In particular, they use the Pellet
identifying defects in FMs represented with
logic.

III. PROPOSED SOLUTION

The framework proposed in this paper
this section through two sub-sections. The first one
presents how we construct the Feature Model Ontology
The Feature Model Ontology represents concepts of a
meta-model of FMs. The second one presents
we call Defect analyzer. This tool identifies
optional features in FMs, identifies its caus
in natural language why these defects occur.
of our proposal framework is presented in Figure 2.

Figure 1. GLP Feature Model based on the one proposed in [23]

are undesirable properties that
the model [8], [24]. In this

paper, we are interested in two common types of defects
: Dead features and false optional features.

when it is not present in any valid
[3], [9], [25], [26]. When a FM

has dead features, the model is not an accurate
. In fact, if a feature

important in the domain
represent. Therefore, it

should be possible to incorporate that feature in at least

if it is declared as optional in
FM, but it is required in all valid configurations [5],

This defect also gives a wrong idea of

ead and false optional features arise when a
[27] or when the FM

dependencies that relate its
if a full mandatory

feature requires an optional feature, this optional feature

useful for dealing with
[16], [17] authors use the

relationships between the ontology concepts to
defects related to the

 (e.g., identify if a
feature is required and excluded at the same time for

authors to classify the
that cause each defect.

use ontologies to identify and fix
the conformance checking of the FM

use the Pellet[28] reasoner for
represented with description

OLUTION

he framework proposed in this paper is presented in
sections. The first one

Feature Model Ontology.
represents concepts of a

The second one presents the tool that
This tool identifies dead and false

its causes and explains
in natural language why these defects occur. An overview

framework is presented in Figure 2.

Figure 2. Proposed framework overview

A. Feature Model Ontology

An ontology is a formal explicit specification for a
shared conceptualization [29], [30]
FMs, ontologies help to identify and def
basic concepts and the dependencies among them

Ontologies comprises classes, properties, constraints,
and individuals [31]. Classes are the m
to the ontology domain. Properties
properties or object properties. Object properties relate
ontology individuals among them, whereas data
properties relate ontology individuals with concrete
values, for example, an integer value.
the restrictions that individuals must
class; and individuals represent objects in the domain of
interest. In this paper, we use
Feature Model Ontology (cf. Figure

Figure 3. Proposed ontology to represent FM

ramework overview

Feature Model Ontology: How to built it

An ontology is a formal explicit specification for a
[29], [30]. In the same way that

to identify and define the domain
concepts and the dependencies among them.

Ontologies comprises classes, properties, constraints,
are the main concepts related

Properties are the data-type
properties or object properties. Object properties relate
ontology individuals among them, whereas data-type

e ontology individuals with concrete
values, for example, an integer value. Constraints describe

that individuals must satisfy to belong to a
epresent objects in the domain of

In this paper, we use ontologies to build our
cf. Figure 3).

Proposed ontology to represent FM

The Feature Model Ontology represents the FMs
concepts in the form of ontology. This representation
allows us to exploit g the semantic relationships among
the concepts involved in FMs. For instance, we can ask
for features that have the same father, or features that are
related by mandatory and exclude depethe same cies at
same time.

We constructed the Feature Model Ontology using the
guide to construct ontologies proposed in [32], and
adapting the UML-based FM meta-model proposed in [6]
(cf. Figure 4). We separate the meta-model class Feature
in the ontology classes NotRootFeature and RootFeature
with the aim of representing in the ontology that a FM
only has one root feature. In addition, in the Feature
Model Ontology the meta-model classes correspond to
classes of the ontology; the dependencies between meta-
model classes are represented as ontology object
properties; and the attributes of the groupCardinality
meta-model classes are represented as ontology datatype
properties. Besides, the inheritance dependencies among
the meta-model classes are represented as isA
dependencies. It is worth noting that we do not consider
feature attributes in our ontology (nor in our FM meta-
model) since attributes are not involved in the FM defects
in which we are interested in this paper.

Since we use ontology classes and properties to
represent the FM meta-model, if an individual violates the
conditions defined for the classes or properties during the
population process, the ontology becomes inconsistent
(this issue is beyond the scope of this paper, but is covered
in [6] and [18]).

The use of ontologies to represent FMs is not new; in
fact, there are several works that use ontologies to
represent FMs because ontologies increase the
expressiveness level provided by FMs [13], [14]. Other
authors are motivated by the fact that the ontological
representation of FMs makes possible to verify
consistency between the feature model and its meta-model
[18]. Even others are motivated by the fact that the
ontological representation allows inferring interesting
information regarding the FMs; for instance, obtain
sibling features [17].

Figure 4. FM meta-model based on the one proposed in [6]

B. Defect analyzer

Defect analyzer is the tool of our proposal that
identifies and explains in natural language dead and false
optional features. In particular, it receives as input the
Feature Model Ontology and the FM to analyze, and
produces as result the identified dead and false optional
features (if any), the causes of each defect and one

explanation in natural language for each identified cause.
The Defect analyzer is composed of three parts: the
transformer, the identifier of defects and the explainer.
Following sub-sections explain and give details of each
one of these modules.

1) Transformer
Transformer module is the responsible of populating

the Feature Model Ontology with the elements of the FM
to analyze. Populate an ontology consists in creating
individuals in the classes of the ontology. First, the
Transformer reads each element of the input FM, and
second, it creates one individual in the corresponding
ontology class and fills the properties of each individual.

In our populated Feature Model Ontology, FM
dependencies are individuals of one of the following
ontology classes: Optional, Mandatory, Requires
and Excludes. The class in which the Transformer
creates each individual depends of the type of dependency
in the FM. For instance, dependency OD2 (cf., Figure 1)
is an individual of the Mandatory ontology class.

All features of the FM are individuals by inheritance of
the Feature class. Moreover, the FM root is an
individual of the RootFeature ontology class, and all
other features are individuals of the NotRootFeature
ontology class. For instance, in our running example, GPL
is an individual of the RootFeature ontology class, and
Search is an individual of the NoRootFeature
ontology class.

Transformer fills the properties of each individual that
it created using information obtained from the input. For
instance, according to our Feature Model Ontology,
individuals of ontology class Dependency (e.g., R3 in
our running example) have the properties
hasDependencySource (GPL) and
hasDependencyDestination (Search).

Henceforth other components of the Defect analyzer
use Feature Model Ontology populated with the
information of the FM for analyzing the FM.

2) Identifier of defects
Identifier of defects is the module that identifies dead

and false optional features and their causes in the
populated Feature Model Ontology.

We define a set of rules that represent six specific cases
of misuse among the FM dependencies that cause dead
features, and three specific cases that cause false optional
features. Thus, when the Identifier of defects applies these
rules on the populated Feature Model Ontology, the
identified features are considered as dead or false optional,
and each used rule is a cause that originates the identified
dead or false optional features.

The use of rules to detect dead and false optional
features is not new. For instance, Van der Massen and
Lichter [9] define six rules to identify defects in FODA
models (using a feature notation with group cardinalities,
as we do, these six rules become two because boolean
dependencies can be represented using group
cardinalities). However, the approach presented in this
paper considers these two rules and seven more that we
identified through our academic and industrial experience
working with FMs. For each rule, we (i) specify the cause
as a general explanation about the defect; (ii) specify the
rule in first-order logic; (iii) present an explanation

template; and (iv) present an example based in our
running example (cf., Figure 1).

We describe each rule with one or more Horn Clauses
[33]. In our Horn Clauses, antecedents are conditions that
must occur together for producing the analyzed defect,
and the consequent is that a feature is dead or false
optional.

Our collection of 9 rules intends to find and explain the
causes of dead and false optional features. The first rule is
about optional features that become false optional when
they are required by full mandatory features. The second
rule is about optional features that become false optional
when they make part of a group cardinality (with a full
mandatory father) having one or several dead features into
the bundle. The third rule is about optional features that
become false optional when they are required by another
false optional feature. The fourth rule refers to optional
features that become dead when they are excluded by full
mandatory features. The fifth rule is about optional
features that become dead when they are excluded by false
optional features. The sixth rule deals with optional
features that become dead when one of their ancestors is
also dead. The seventh rule is about optional features that
become dead when they require dead features. The eighth
rule is about optional features that become dead when they
make part of a group cardinality that has one or several
false optional features into the bundle. Finally, the ninth
rule refers to optional features that become dead when
they require features that make part of a group cardinality
(with a full mandatory father), but the number of required
features exceeds the upper bound of the group cardinality.

In the rest of this section (i) we formalize in first-order
logic each one of these rules; (ii) we present the template
in natural language that each rule use to explain the cause
of the particular defect that raise the rule—we call that
“explanation template”; and (iii) we show how this rule
can be used in our running example (cf. Figure 1). We
use the following first-order logic predicates, functions
and sets to formalize the rules as Horn Clauses:

• requires(x,y): This predicate indicates that
feature x requires feature y. In our running example
requires (Cicle,DFS).

• excludes(x,y): This predicate indicates that
feature x and feature y are mutually exclusives. In
our running example excludes(BFS,F2).

• ancestor(x,y): This predicate indicates that
feature x is an ancestor of feature y. In our running
example ancestor (GPL,Weighted) and
ancestor (GPL,Search).

• nameDependency(x,y): This function returns
the name of a given dependency that relates feature
x with feature y. In our running example
nameDependency(GPL,Search) returns
OD2.

• ModelFeaturesSet: This set represents the
collection of all features of a feature model.

• OpSet: This set represents the collection of all
optional features of a feature model.

• FMSet: This set represents the collection of all full
mandatory features of a feature model.

• DeadSet: This set represents the collection of all
dead features of a feature model.

• FalseOptionalSet: This set represents the
collection of all false optional features of a FM.

Where
OpSet ˄ FMSet ˄ DeadSet ˄
FalseOptionalSet ⊆ ModelFeaturesSet

For the sake of presentation of rules, false optional

features with the acronym FO and dead features will be
referred with the acronym DF.

Rule FO1: an optional feature becomes false optional
when a full mandatory feature requires an optional
feature.
Formalization:

∀x∈ FMSet , ∀y ∈ OpSet:
requires(x,y)→ y ∈ FalseOptionalSet
Explanation template: Feature y is false optional because
it is required for the full mandatory feature x in the
dependency nameDependency(x,y).
Application to the running example: Feature AF1 is false
optional because it is required for the full mandatory
feature Search in the dependency AD15.

Rule FO2: an optional feature becomes false optional
when it is grouped by a group cardinality (with a full-
mandatory father) having dead features. The feature must
be selected to satisfy the lower group cardinality.
Formalization:
z= group cardinality (with father
feature being full mandatory) of the
FM at hand
m =Lower bound of z
DFGroupSet= {Dead features that belong
to z}
NotDFGroupSet={Features not dead that
belongs to z}
GroupFeaturesSet= {Features grouped by
the group cardinality z}
Where,
GroupFeaturesSet ⊆ ModelFeaturesSet ˄
NotDFGroupSet = GroupFeaturesSet \
DFGroupSet
Then,
|NotDFGroupSet |= m →
NotDFGroupSet ⊆ FalseOptionalSet
Explanation template: Feature y is false optional because
it must be selected to satisfy the lower bound m of the
group cardinality z to which it belongs.
Application to the running example: Feature AF10 is
false optional because it must be selected to satisfy the
lower bound 1 of the group cardinality AD24 to which it
belongs.

Rule FO3: an optional feature becomes false optional
when it is required by another false optional feature.

Formalization:

∀x ∈ FalseOptionalSet, ∀y ∈ OpSet:
requires(x,y)→ y ∈ FalseOptionalSet
Explanation template: Feature y is false optional
because it is required by the false optional feature x
through the dependency nameDependency(x,y).
Application to the running example: Feature AF9 is false
optional because it is required by the false optional
feature AF1 through dependency AD20

Rule DF1: an optional feature becomes dead when it is
excluded by a full mandatory feature.
Formalization:

∀x ∈ FMSet, ∀y ∈ OpSet:
excludes(x,y)→ y ∈ DeadSet
Explanation template: Optional feature y is dead because
it is excluded by the full mandatory feature x through the
dependency nameDependency(x,y).
Application to the running example: Optional feature
AF11 is dead because it is excluded by the full
mandatory feature AF8 through dependency AD17.

Rule DF2: an optional feature becomes dead when it is
excluded by a false optional feature.
Formalization:

∀x ∈ FalseOptional, ∀y ∈ OpSet :
excludes(x,y)→ y ∈ DeadSet
Explanation template: Optional feature y is dead because
it is excluded by the false optional feature x through the
dependency nameDependency(x,y).
Application to the running example: Optional feature
AF7 is dead because it is excluded by the false optional
feature AF9 through dependency AD18.

Rule DF3: a feature becomes dead when one of its
ancestors is dead.
Formalization:

∀x ∈ DeadSet, ∀y ∈ ModelFeaturesSet:
ancestor(x,y)→ y ∈ DeadSet
Explanation template: Feature y is dead because x, its
ancestor feature, is a dead feature too.
Application to the running example: Feature AF14 is
dead because AF11, its ancestor feature, is a dead feature
too. Features AF12 and AF13 are also identified as dead
features for this rule.

Rule DF4: a feature becomes dead when it requires
another dead feature.
Formalization:

∀x ∈ ModelFeaturesSet, ∀y ∈ DeadSet:
requires(x,y)→ x ∈ DeadSet

Explanation template: Feature x is dead because it
requires the dead feature y. The name of the requires
dependency is nameDependency(x,y).
Application to the running example: Feature AF15 is
dead because it requires the dead feature AF12. The
name of the requires-type dependency is AD16.

Rule DF5: a feature becomes dead if it belongs to a
group cardinality and the number of false optional
features is equal to the cardinality upper bound.
Formalization:
Z: group cardinality of the FM at hand
n: Upper cardinality of z
FOGroupSet: set of false optional
features that belong to z
NotFOGroupSet: set of features not
false optional that belongs to z}
GroupFeaturesSet= set of features
grouped by the group cardinality z
Where,
FOGroupSet ⊆ GroupFeaturesSet⊆
ModelFeaturesSet ˄
NotFOGroupSet = GroupFeaturesSet \
FOGroupSet
Then,
|FOGroupSet| = n → NotFOGroupSet ⊆
DeadSet
Explanation template: Feature y is dead because it cannot
be selected from its group cardinality z, since the upper
bound n of the group cardinality z is attained with the
following false optional features FOGroupSet.
Application to the running example: Feature AF2 is dead
because it cannot be selected in its group cardinality
AD23, since the upper group cardinality 1 of AD23 is
satisfied with the following false optional features: F1.

Rule DF6: an optional feature becomes dead if it requires
features that belongs to group cardinality, but the number
of required features is greater than the upper bound of the
group cardinality.
Formalization:
z: group cardinality (with father
feature being full mandatory) of the
FM at hand
n: upper cardinality of z
DFGroupSet: set of dead features that
belong to z
IncludesFeaturesSet: set of features
that belong to z and are includes by
another feature of the FM
GroupFeaturesSet: set of features
grouped by z
Where,
IncludesFeaturesSet ⊆
GroupFeaturesSet⊆ ModelFeaturesSet

Then,

∀y ∈ OpSet, ∀x ∈ GroupFeaturesSet:
includes(y,x) → x∈ IncludesFeaturesSet
|IncludesFeaturesSet| ≥ n →y ∈ deadSet
Explanation template: Feature y is dead because it
requires the feature(s) IncludesFeaturesSet that
belong(s) to the group cardinality z. Required feature(s)
exceed(s) the upper bound n of the group cardinality z.
Application to the running example: Feature
Connected is dead because it requires the feature(s)
Directed, Undirected that belong(s) to the group
cardinality OD26. Required feature(s) exceed(s) the
upper bound 1 of the group cardinality OD26.

It is worth noting that aforementioned rules are
interrelated. These relationships are presented in Figure 5.
In this figure, identification process begins with the dead
features found by rule DF1 and false optional features
found by rule FO1. Then, rules DF2, DF5 and DF6
receive as input the identified false optional features, and
identify dead features. Inversely, rule FO2 receives as
input dead features and identifies false optional features.
Rule FO3 receives false optional features as input and
identifies new false optional features, and rules DF3 and
DF4 receive dead features as input and identify new dead
features. The process ends when the Identifier of defects
executes all rules and it does not find new dead or false
optional features. On the contrary, if new dead and false
optional features appear, the Identifier of defects runs
again all rules using false optional and dead features as
input to find new ones.

3) Explainer
Once the Identifier of defects identifies dead and false

optional features and their causes, the Explainer constructs
explanations in natural language according to the rule
used to find each defect. In the explanation process, the
Explainer executes the following tasks:

• It obtains the rule used to identify each false
optional or dead feature.

• It takes the explanation template associated with
the rule identified in the previous task.

• It fills the explanation template at hand with the
corresponding instances from the populated
Feature Model Ontology.

It is worth noting that if a feature is involved in more
than one rule, the Identifier of defect identifies all different
rules used to identify this dead or false optional feature.
Consequently, the Explainer makes for each rule a
different explanation. This is the case of F2 in our
example: (i) rule DF1 identifies that feature F2 is dead
because it is excluded by the full mandatory feature F3;
and (ii) rule DF5 identifies that feature F2 is dead because
it belongs to a group cardinality <1..1> where one the
features of the bundle (i.e., the children of F1) is a false
optional feature (due to the dependency A15). In that case,
the Explainer provides an explanation corresponding to (i)
and another one corresponding to (ii).

IV. IMPLEMENTATION DETAILS

The method, ontology and rules presented above were
implemented into the prototype tool called Defect
analyzer using Java, and the JESS (Java Expert System
Shell)1 reasoner to execute queries in SQWRL [34]. The
tool was tested with the Graph Product Line case study,
and with 30 random FMs generated with the
BEnchmarking and TesTing on the analYsis (BeTTy) [35]
tool. Our approach was implemented in two stages. In the
first stage, we used Protégé 3.4.8 for creating the Feature
Model Ontology to represent concepts of the FMs meta-
model. In the second stage, we developed the Defect
analyzer.

Broadly, each component of the Defect analyzer works
as follows:

(i) Transformer: It uses a library available in the
SPLOT website2, for reading FMs in the Simple XML
Feature Model (SXFM) format. Then, this component
uses Jena3 to manipulate the ontology inside Java for
creating individuals in the Feature Model Ontology with
the information of the analyzed FM. When the
Transformer ends populating the ontology, it creates a
new OWL4 file with the Feature Model Ontology
populated with the information of the analyzed FM. The
OWL file of our Feature Model Ontology populated with
the running example is available online5.

 (ii) Identifier of defects: It uses SQWRL to implement
the rules proposed in the Section III. A SQWRL query
comprises an antecedent and a consequent expressed in
terms of OWL classes and properties. The antecedent
defines the criteria that individuals must satisfy to be
selected, and the consequent specifies the individuals to
select in the query results. In our approach, SQWRL use
classes and properties defined in the Feature Model
Ontology to query for information of the FM represented
as ontology individuals. Identifier of defects executes and
manipulates all rules from Java.

For the sake of space, we only present the source code
of the first rule (i.e., FO1), in which full mandatory
features require optional features. Nevertheless, our nine
rules have a similar structure. The whole code is available
for download from Internet5.

(1) Requires(?z) ^
(2) Optional(?w) ^
(3) hasDependencyDestination(?w, ?a)
(4) hasDependencySource(?z, COMODIN) ^
(5) hasDependencyDestination(?z, ?a) ^ ->
(6) sqwrl:selectDistinct(?a)

Lines 1 to 5 define conditions under which a feature can

be considered false optional. Line 1 represents any
instance of the ontology class Requires and line 2

1 http://herzberg.ca.sandia.gov
2 http://www.splot-research.org
3 http://jena.apache.org
4 The Ontology Web Language (OWL) is a language used to

describe the classes and dependencies between ontologies. For more
information, please visit http://www.w3.org/TR/owl-guide/

5 https://sites.google.com/site/raulmazo/

Figure 5. Relationship among our collection of rules

represents any instance of the ontology class Optional.
Ontology classes Requires and Optional are
subclasses of the ontology class Dependency in the
Feature Model Ontology (cf. Figure 3). Lines 3 to 5 use
properties hasDependencyDestination and
hasDependencySource to link a dependency with
its related features (cf. Figure 3).First argument of these
properties is an individual of the class Dependency and
the second is an individual of the class Feature. Word
COMODIN in line 3 is an argument that takes the values of
individuals identified as full mandatory features. The
value of COMODIN depends of each rule (e.g., in rule DF2
COMODIN corresponds to false optional features, but in
rule DF3, corresponds to dead features). Line 6 is the
consequent of this query, which consists in selecting the
feature ?a. Note that the SQWRL rule to identify dead or
false optional features only selects in the consequent the
false optional feature ?a that satisfy the rule, but it does
not select the dependencies related to the defect. For each
obtained defect, the Explainer executes another SQWRL
query to get the necessary information to complete the
explanation, as follows:

(iii) Explainer: Once the false optional or dead features
are identified by the rules presented in (ii), the Explainer
executes a new SQWRL query to get dependencies and
other features related to the defect at hand and fill the
explanation template of the corresponding rule. For
instance, the following SQWRL obtains the dependency
and the features related to each false optional feature
obtained from rule FO1.

(1) Requires(?z) ^
(2) hasDependencyDestination(?z,COMODIN)^
(3) hasDependencySource(?z,?b) ->
(4) sqwrl:selectDistinct(?b) ^
(5) sqwrl:selectDistinct(?z)

Lines 1 to 3 define necessary conditions that must
satisfy individuals ?b and ?z to be selected in the query.
Line 1 represents any instance of the ontology class
Requires. Lines 2 and 3 define the features source and
destination of the ontology class Requires. Word
COMODIN in line 2 is the false optional feature found with
the query presented in (ii). The consequent of this
SQWRL query consists in selecting feature ?b requiring
the false optional feature COMODIN and the requires-type
dependency ?z from ?b to COMODIN. Thus, the
explanation corresponding to the rule FO1 is as follows.

“Feature COMODIN is false optional because it is
required for the full mandatory feature ?b in the
dependency ?z.”

V. PRELIMINARY EVALUATION

We assessed the precision, scalability and usability of
our approach with 31 models clustered as presented in
Table III.

Our preliminary evaluation was undertaken in the
following environment: Laptop with Windows 7 Ultimate
of 32 bits, processor Intel® Core™ i5-2410M, CPU 2.30
GHz, and RAM memory of 4,00 GB, of which 2.66 GB is
usable by the operating system.

1) Precision
We tested our approach in three steps. First, we verified

that it did not generate false positives. Second, we verified
that the proposed solution identified 100% of dead and
false optional features considered in our collection of
rules. Finally, if the FMs had dead or false optional
features, we manually validated that explanations
corresponded to the case that produced the defect, and that
the filled spaces in the explanation templates
corresponded to real situation for each one of the models.

In the first stage, we compared the dead and false
optional features with the results obtained using FaMa
[36] and VariaMos [37]. We found that our proposal
identified the 100% of the dead and false optional features
that satisfied our rules, with 0% false positive. For the
second and third stage, we made a manual inspection of
correctness over the running example and two
models(randomly selected) of each cluster. We found that
our proposal constructed correct explanations; i.e., they
corresponded to the cause(s) that originated each defect.

Figure 6 presents the number of dead and false optional
features found in each analyzed FM.

TABLE II.
FEATURE MODELS COLLECTION BENCHMARK

Number of
features

5 25 32 50 75 100 150

Number of
models

5 5 1 5 5 5 5

% of requires
and excludes
relationship

40 40 18 40 40 40 40

2) Computational Scalability
In order to make performance measurement, we

executed five times each of the 31 models, which means
155 (31x 5) queries.

The time measures presented in Figure 7 are the
average of the five executions of each model. Y-axis
corresponds to computation time in milliseconds (ms) that
took the Defect analyzer to execute all the tasks of our
approach, and X-axis corresponds to the number of
features of each model. According to results, our approach
took less than 5 sg (5000 ms) executing the Defect
analyzer in FM up to 100 features and took about two
minutes on models with 150 features.

Figure 6. Number of defects identified by model size

Figure 7. Number of defects identified by model size

3) Usability
In order to make more usable our approach, we

developed a graphic presentation of our Defect analyzer.
Our tool receives a FM, the one selected by the user with
the “Choose file” button, in SXFM format. Then, when
the user presses the “Analyze” button, the Transformer
module, populating the Feature Model Ontology with the
elements of the FM at hand. Then, the modules Identifier
of defects and Explainer process the Feature Model
Ontology with the individuals of the analyzed FM and
present results to the user. Figure 8 corresponds to a
snapshot of part of the feedback obtained from our tool
when we analyzed dead and false optional features in our
running example. For each found defect, our tool says
what it corresponds to, the cause that origins it, and gives
the corresponding explanation in natural language.

Figure 8. Snapshot corresponding to a part of the results generated

from analyzing our FM running example

VI. RELATED WORK

Two collections of approaches for FM defects cause
identification can be met in the literature: those that use
ontologies to represent and reason on FMs and the others.

From the first category, Wang et al. [19] propose
representing FMs and their constraints in OWL ontology
language. In their proposal, the authors represent each
feature as an ontology class, and each dependency as an
ontology property. Their study identifies inconsistencies
in FMs configurations and provides explanations for
inconsistencies. However, their approach does not analyze
the FM itself to identify the shortcomings. Abo et al. [17]
propose to use ontologies to represent FMs and facilitate
their integration when they represent different views of a
product line. Additionally, these authors describe SWRL
(Semantic Web Rule Language) rules to validate model
consistency. They define each situation that creates an
inconsistency as an antecedent, and the elements involved
as the consequent. However, their research aims at
facilitating integration of different FMs, whereas that our
approach focuses on identifying and explaining dead and
false optional features and their causes. Moreover, Lee et
al. [15] propose to use ontologies to represent FMs in
order to analyze their variability and commonality. Even if
they use ontologies to represent FM, their approach is
different to ours. They use ontologies to analyze the
semantic similarity of the FM, whereas our approach uses
ontologies to identify dead features and explain their
causes. Noorian et al. [18] propose to use descriptive logic
to: (i) identify inconsistencies in FMs represented in
SXFM; (ii) identify inconsistencies in products configured
from the product line; and (iii) propose possible
corrections. They implement their approach in a
framework that uses OWL-DL to represent FMs and their
configurations, and Pellet[28] as reasoner. We also use
SXFM to represent FMs and description logic to represent
our ontology. However, we focus on identifying and
explaining dead and false optional features and not on
conformance checking [6] as Noorian et al. do. Moreover,
our approach could detect structural defects if we verify
(using the corresponding Protégé’s function) the
consistency of the ontology after populating it.

Regarding the second category, several works were
carried out to automatically identify dead features (and
other defects) on FMs [3], [5], [7–10]. However, none of
these works deals with identification of causes or
explanations of dead and false optional features.

Trinidad et al. [12] present an automated method for
identifying and explaining defects, such as dead features
or false optional features in FMs. The authors transform
FMs into a diagnostic problem and then into a constraint
satisfaction problem. They automated their approach in
FaMa [36], an Eclipse Plug-in for automatic analysis of
FMs. Their proposal identifies the dead features and false
optional features, and minimum set of dependencies
necessary to create such features. However, their approach
works like a black box, hard-coded in FaMa, where user
cannot create new rules to interrogate the FM. Besides,
explanations generated by FaMa are not in natural
language, but they are rather a list of dependencies that
modeler should modify to remove the defect. Thus, FaMa
gives the dependencies participating in the defect, but it
does not explain the defect itself, which our approach
does.

In a more recent work, Trinidad et al. [11] use
abductive reasoning to identify dead features and their
causes. Unfortunately, authors do not provide any details
or even an algorithm to implement their proposal.

It is worth noting that FaMa finds and explains other
dead and false optional features that our approach did not
identify. This is because we have not implemented all the
cases to identify and explain all causes of dead features or
false optional features. FaMa identifies all cases because it
uses a constraint satisfaction approach to identify dead
features, false optional features and other defects on FMs.
However, our rule-based approach is extensible, it allows
us to explain in natural language why defects occur, and it
allows us to analyze dead and false optional features when
FMs are void [3], three aspects that FaMa does not
support.

VII. CONCLUSIONS AND DISCUSSION

In this paper, we proposed an ontological rule-base
approach to analyze dead and false optional features. Our
defect analysis consists in identifying dead and false
optional features in FMs, identifying certain causes of
these defects, and explaining these causes in natural
language. To operationalize our proposal, we propose an
OWL ontology for representing FM and we propose 9
rules that represent certain causes that produce dead or
false optional features and have associate an explanation
in natural language. These rules were formalized in first-
order logic and implemented in SQWRL and Java. We
validated our proposal with a well-known case study and
with 30 random features models with until 150 features.

The approach developed in this paper represents an
innovative alternative to the ones found in literature [3],
[5], [7–12], [16–19], because we not only identify dead
and false optional features, but we also identify their
causes and build explanations in a human compressible
language. We believe that this information could avoid
modelers take the same mistakes in others FMs. However,
there are other cases outside of the scope of this proposal
(e.g. identifying dead features when they are produced for
mandatory features whose predecessor is an optional
feature). Indeed, it is necessary to continue extending our
solution to identify with other rules dead and false
optional features.

We are also interested in exploring dependency
between dead features and void models, because we
detected that many of our rules could identify void models

if they are applied with mandatory and false optional
features.

ACKNOWLEDGMENT

We perform this research under the stage of the Master
of Engineering - Engineering Systems financed by the
National University of Colombia and the Informatics
Research Center (CRI) at University Paris I Pantheon
Sorbonne in France.

REFERENCES
[1] J. Bosch, Design and Use of Software Architectures.
Adopting and Evolving a Product-Line Approach. Addison-Wesley
Professional, 2000.
[2] P. Clements and L. Northrop, Software Product Lines:
Practices and Patterns, 1st ed. Addison-Wesley Professional, 2001.
[3] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson,
“Feasibility Study Feature-Oriented Domain Analysis (FODA).
Technical Report,” 1990.
[4] D. Benavides, S. Segura, and A. Ruiz-Cortes, “Automated
analysis of feature models 20 years later: A literature review,”
Information Systems, vol. 35, no. 6, pp. 615–636, 2010.
[5] W. Zhang and H. Zhao, “A Propositional Logic-Based
Method for Verification of Feature Models,” in Proceedings of the
6th International Conference on Formal Engineering Methods
(ICFEM’04), 2004, pp. 115–130.
[6] R. Mazo, R. Lopez-Herrejon, C. Salinesi, D. Diaz, and A.
Egyed, “Conformance Checking with Constraint Logic
Programming: The Case of Feature Models,” in Proceedings of the
35th Annual International Computer Software and Applications
Conference (COMPSAC), 2011, pp. 456–465.
[7] K. Czarnecki and C. Kim, “Cardinality-based Feature
Modeling and Constraints: A progress Report,” in Proceedings of
the InternationalWorkshop on Software Factories (OOPSLA 2005),
2005.
[8] C. Salinesi and R. Mazo, “Defects in Product Line Models
and how to Identify them,” in Software Product Line - Advanced
Topic, InTech., A. Elfaki, Ed. 2012, pp. 1–40.
[9] T. Von der Massen and H. Lichter, “Deficiencies in Feature
Models,” in Workshop on Software Variability Management for
Product Derivation - Towards Tool Support, 2004.
[10] T. Thüm, C. Kastner, F. Benduhn, J. Meinicke, and Saak,
“FeatureIDE: An extensible framework for feature-oriented
software development,” Science of Computer Programming, 2012.
[11] P. Trinidad and A. Ruiz-Cortes, “Abductive Reasoning and
Automated Analysis of Feature models: How are they connected,”
in Proceedings of the Third International Workshop on Variability
Modelling of Software-Intensive Systems, 2009, pp. 145–153.
[12] P. Trinidad, D. Benavides, A. Duran, A. Ruiz-Cortes, and M.
Toro, “Automated Error Analysis for the Agilization of Feature
Modeling,” Journal of Systems and Software, vol. 81, no. 6, pp.
883–896, 2008.
[13] K. Czarnecki and K. T. Kalleberg, “Feature Models are
Views on Ontologies,” in Proceedings of the 10th International on
Software Product Line Conference (SPLC ’06), 2006, pp. 41–51.
[14] K. Sandkuhl, C. Thörn, and W. Webers, “Enterprise
Ontology and Feature Model Integration - Approach and
Experiences from an Industrial Case,” in ICSOFT
(PL/DPS/KE/MUSE), 2007, pp. 264–269.
[15] S. Lee, J. Kim, C. Song, and D. Baik, “An Approach to
Analyzing Commonality and Variability of Features using
Ontology in a Software Product Line Engineering,” in Proceedings
of the Fifth International Conference on Software Engineering
Research, Management and Applications, 2007, pp. 727–734.
[16] L. Abo, G. Houben, O. De Troyer, and F. Kleinermann, “An
OWL- Based Approach for Integration in Collaborative Feature
Modelling,” in SWESE 2008. 4th Workshop on Semantic Web
Enabled Software Engineering, 2008.
[17] L. Abo, F. Kleinermann, and O. De Troyer, “Applying
semantic web technology to feature modeling,” in Proceedings of

the 2009 ACM symposium on Applied Computing (SAC ’09), 2009,
pp. 1252–1256.
[18] M. Noorian, A. Ensan, E. Bagheri, H. Boley, and Y.
Biletskiy, “Feature Model Debugging based on Description Logic
Reasoning,” in DMS’11, 2011, pp. 158–164.
[19] H. H. Wang, Y. F. Li, J. Sun, H. Zhang, and J. Pan,
“Verifying feature models using OWL,” Web Semant., vol. 5, no. 2,
pp. 117–129, 2007.
[20] G. Spanoudakis and A. Zisman, “Inconsistency management
in software engineering: Survey and open research issues,”
Handbook of software engineering, pp. 329–380, 2001.
[21] T. von der Maßen and H. Lichter, “Deficiencies in feature
models,” workshop on software variability …, 2004.
[22] K. Czarnecki, S. Helsen, and U. W. Eisenecker,
“Formalizing Cardinality-based Feature Models and their
Specialization,” Software Process: Improvement and Practice, vol.
10, no. 1, pp. 7–29, 2005.
[23] R. E. Lopez-Herrejon and D. S. Batory, “A Standard
Problem for Evaluating Product-Line Methodologies,” in
Proceedings of the Third International Conference on Generative
and Component-Based Software Engineering, 2001, pp. 10–24.
[24] D. Benavides, P. Trinidad, and A. Ruiz-Cortés, “Automated
reasoning on feature models,” in Proceedings of the 17th
international conference on Advanced Information Systems
Engineering, 2005, pp. 491–503.
[25] P. Trinidad, D. Benavides, and A. Ruiz-Cortés, “Isolated
Features Detection in Feature Models,” in Proceedings of
Conference on Advanced Information Systems Engineering (CAiSE
2006), 2006, vol. 01, pp. 1–4.
[26] A. Osman, S. Phon-Amnuaisuk, and C. Kuan Ho,
“Knowledge Based Method to Validate Feature Models,” in First
International Workshop on Analyses of Software Product Lines,
2008, pp. 217–225.
[27] R. Mazo, “A Generic Approach for Automated Verification
of Product Line Models,” Ph.D.thesis.Paris 1 Panthéon – Sorbonne
University, Paris, France, 2011.

[28] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz,
“Pellet: A practical OWL-DL reasoner,” Web Semant., vol. 5, no. 2,
pp. 51–53, 2007.
[29] W. Borst, “Construction of Engineering Ontologies for
Knowledge Sharing and Reuse: Ph.D. Dissertation,” University of
Twente, 1998.
[30] T. Gruber, “Toward Principles for the Design of Ontologies
Used for Knowledge Sharing,” in International Workshop on
Formal Ontology, 1993.
[31] M. Horridge, H. Knublauch, A. Rector, R. Stevens, and C.
Wroe, “A Practical Guide To Building OWL Ontologies Using The
Protege-OWL Plugin and CO-ODE Tools Edition 1.0,” 2004.
[32] N. Noy and D. McGuinness, “Ontology Development 101 :
A Guide to Creating Your First Ontology,” 2001.
[33] M. H. Van Emden and R. A. Kowalski, “The Semantics of
Predicate Logic as a Programming Language,” J. ACM, vol. 23, no.
4, pp. 733–742, 1976.
[34] M. O’Connor and A. Das, “SQWRL: a Query Language for
OWL,” in Proceedings of the 6th International Workshop OWL:
Experiences and Directions, 2009.
[35] S. Segura, J. A. Galindo, D. Benavides, J. A. Parejo, and A.
Ruiz-Cortés, “BeTTy: benchmarking and testing on the automated
analysis of feature models,” in Proceedings of the Sixth
International Workshop on Variability Modeling of Software-
Intensive Systems, 2012, pp. 63–71.
[36] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and A.
Jimenez, “Fama framework,” in Software Product Line Conference,
2008. SPLC’08. 12th International, 2008, vol. 81, no. 6, pp. 359–
359.
[37] R. Mazo, C. Salinesi, and D. Diaz, “VariaMos : a Tool for
Product Line Driven Systems,” in Proceedings of the 24th
International Conference on Advanced Informa- tion Systems
Engineering (CAiSE Forum’12), 2012, no. June, pp. 25–29.

