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Abstract- Product lines engineering uses Feature Models 
(FMs) as a notation to represent variability and 
commonality in families of products. One of the well-known 
issues of FMs is that they may have defects that can 
drastically diminish the benefits of the product line 
approach. Two of these defects are dead features and false 
optional features. Dead features are features absent from 
any valid product of the product line. False optional 
features are features declared as optional but actually 
required in all valid products. These two types of defects are 
undesirable in FMs because they give a wrong idea of 
domain that represents the FM. Several techniques 
documented in literature help to identify dead and false 
optional features. However, only few of them tackle the 
problem of identifying the causes of these defects. Besides, 
the explanations they provide are cumbersome and hard to 
understand by humans. In this paper, we propose an 
ontological rule-based approach to (i) identify dead and 
false optional features in FMs; (ii) identify certain causes of 
these defects; and (iii) explain these causes in natural 
language. Moreover, we propose a collection of rules that (i) 
formalize some cases that produce dead and false optional 
features; (ii) find the FM’s elements that causes each defect; 
and (iii) explain why a feature is dead or false optional. This 
collection of rules helps modelers to correct the defects 
found in FMs and helps prevent the occurrence of new ones. 
We illustrate our approach in a reference model from 
literature. A preliminary empirical evaluation of our 
approach, using a benchmark composed of 31 FMs of sizes 
up to 150 features, shows that the proposal is effective, 
accurate and scalable. 
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I. INTRODUCTION 

A Software Product Line (SPL) is a family of related 
software systems with common and variable functions 
whose first objective is reusability [1]. Extensive research 
and industrial experience have widely proven the 
significant benefits of Software Product Line Engineering 
(SPLE) practices. Among them are: reduced time to 
market, increased asset reuse and increased software 
quality [2]. SPLE usually uses Product Line Models 

(PLMs) to represent the correct combination of features 
that represent valid products.  

Feature Models (FMs) are a common language to 
represent PLMs in order to describe the features and their 
dependencies for creating valid products [3]. FMs have 
also proven useful to communicate effectively with 
customers and other stakeholders such as marketing 
representatives, managers, production engineers, system 
architects, etc. Consequently, having FMs that correctly 
represent the domain of the product line is of paramount 
importance to the success with the SPLE production 
approach.  

However, creating models with features that correctly 
represent the domain described by the model is not trivial 
[4]. In fact, when a FM is constructed, defects may be 
unintentionally introduced. Dead and false optional 
features are two types of defects directly related to the 
semantic of FMs.  A feature is dead if it cannot appear in 
any product of the product line [3]. A feature is false 
optional if it is declared as optional, but it appears in all 
products of the product line [5]. Due to the ability of FMs 
to derive a potentially large number of products, any 
defect in a FM will inevitably affect many products of the 
product line [6]. 

Numerous researches focus on identifying dead and 
false optional features in FMs [3], [5], [7–10]. Others 
approaches focus on identifying dead and false optional 
features and identifying the causes that produce these 
defects [11], [12]. Some others works propose even using 
ontologies to represent FMs [13–15] and others propose 
using ontologies for identifying defects in FMs [16–19]. 
However, few researchers have addressed the problem of 
identifying the causes that produce these defects and 
explain them in a human understandable language. This 
means that once defects are found it is necessary to 
manually inspect models to look for why the defects 
occurred. Once engineers know why defects occurred, 
they can try to fix them. Our observation is that this is a 
cumbersome task. Indeed, looking for the causes of 
defects is about as complicated as looking for defects 
themselves even when the defect is already known. 
Therefore, we believe that it is of paramount importance 
to solve this key problem if we really want FMs 
verification methods to be effective in an industry context. 



Our general goal is to find a generic technique that will 
point out the cause of various kinds of defects on product 
line models specified with different notations. In this 
paper, we propose a first step to achieve this goal. In 
particular, we propose an ontological rule-based approach 
to analyze dead and false optional features in FMs, that is: 
identify features of a FM that are dead or false optional, 
identify the causes of these defects, and explain each 
cause in natural language. 

We hope this information helps product line engineers 
to avoid same mistakes in future work, and to understand 
why dead and false optional features occur [12], [20]. 

Our original contribution can be summarized as 
follows: 
1. We propose a framework that (i) identifies dead and 

false optional features in FMs; (ii) identifies the 
causes of these defects; and (iii) creates explanations 
in natural language about each detected cause. 

2. We construct a Feature Model Ontology and we 
formalize—using first-order logic—six rules for 
identifying dead features and three rules for 
identifying false optional features. Each rule defines a 
case in which a feature is dead or false optional. In 
that way, we know the causes that origin each defect, 
and we build the corresponding explanation. We 
defined these rules based on our experience and on 
the rules found in literature [9].  

3. We developed an automated tool to implement our 
approach. The results of our validation show that our 
approach is effective and scalable until FMs of 150 
features. 

The remainder of the paper is as follows. Section II 
gives a brief overview of the necessary concepts for 
understanding the framework presented in Section III. 
Section IV presents the implementation details. Section V 
presents the evaluation of the precision, scalability and 
usability of our approach. Section VI presents related 
research. Finally, Section VII presents the conclusions and 
suggests future research directions. 

II. GENERAL CONCEPTS 

A. Features Models 

Feature modeling is a notation proposed in [3] as part of 
their method for performing a domain analysis of possible 
products of a target domain. In the SPLE, feature-oriented 
domain engineers use Feature Models (FMs) to represent 
commonality and variability of a target domain.  FMs 
show how the domain features are related and show some 
trade-off decisions that must be made for creating a valid 
product in the domain of interest [3]. 

Under this notation, a feature is a distinctive element 
that directly affects final users. Each feature is a node in a 
tree structure, and the model dependencies are directed 
arcs. The tree structure represents hierarchical 
organization of the features. The tree’s root of the FM 
represents whole product line and therefore it is part of all 
valid products of the product line. Each feature 
represented by a non-root node can be associated with a 
product only if the feature represented by the father node 
is associated with the product too. The elements of the 
feature notation that we use in this paper are presented in 

Table 1. An example of FM using this notation is 
presented in Figure 1. 

TABLE I.  TYPES OF DEPENDENCIES IN FMS 

Notation Type of Dependency 
 Mandatory [3] 

Child feature B should be included in all valid 
products containing the parent feature A and 
vice versa. 
It a feature is mandatory and all its ancestors are 
also mandatory, then, this feature is a full 
mandatory feature [21]. 

 

Optional [3] 
Child feature B may or may not be included in 
valid products containing parent feature A. 
However, if feature B is included in a product, 
its father A should be included too. 

  

Group cardinality [22] 
Represents the minimum (m) and the maximum 
(n) number of child features (B...C) grouped in 
a cardinality (<m..n>) that a product can have 
when the father feature (A) is included in the 
product. If at least one of the child features is 
included into a product, the father feature 
should be included too. 

 Requires [3] 
Feature B should be included in valid products 
with feature A. This dependency is 
unidirectional. 

 

Excludes [3] 
Features A and B cannot be in valid product at 
same time. This dependency is bidirectional. 

 
This paper uses an adapted version the Graph Product-

Line (GPL) [23] as running example. The resulting model 
is presented in Figure 1. We used this example because it 
is well-known in the product line community, and it was 
proposed to be a standard case for evaluating product line 
methodologies [23]. In order to illustrate our approach, we 
intentionally introduced 8 dead features (cf., AF2, AF7, 
AF11, AF12, AF13, AF14, AF15, Connected) and 3 false 
optional features (cf., AF1, AF9, AF10) into the original 
model. We used 15 artificial features and 25 dependencies 
to produce these defects. All features and dependencies 
have a name for easier identification. We identified 
artificial features with a capital AF, and artificial 
dependencies with a capital AD. In addition, we identified 
original features of the model with their names, and we 
used a capital OD to build the name of original 
dependencies.  

The members of the GPL are graphs either Directed or 
Undirected, their edges are Weighted or Unweighted, and 
their search algorithms are breadth-first search (BFS) or 
depth-first search (DFS). All products of this FM 
implement one or more of the following search 
algorithms: Vertex Numbering (Number), Connected 
Components (Connected), Strongly Connected 
Components (StronglyCon), Cycle Checking (Cycle), 
Minimum Spanning Tree (MST) and Single-Source 
Shortest Path (Shortest). Moreover, this FM has 
dependencies that limit the valid combination of features 
previously described. For instance, the MST algorithm 
requires Undirected graphs (cf., OD21) and Weighted 
edges (cf., OD20), and StronglyCon algorithm requires 
Directed graphs (cf., OD4) and the DFS search algorithm 
(cf., OD17).  



Figure 1. 

B. Defects in Feature Models 
Defects in PLMs are undesirable properties that 

adversely affect the quality of the model
paper, we are interested in two common
on FMs: Dead features and false optional features. 

A feature is dead when it is not present in any valid 
product of the product line [3], [9], [25], [26]
has dead features, the model is not an accurate 
representation of the domain [4]. In fact, if a feature 
belongs to a FM, the feature is important 
that domain analysts want to represent. Therefore, it 
should be possible to incorporate that feature in at least 
one product of the product line [4].   

|A feature is false optional if it is declared as optional in 
the FM, but it is required in all valid configurations 
[9], [11], [12]. This defect also gives a wrong idea of 
domain that represents the FM. 

Generally, dead and false optional features
group cardinality is wrong defined [27]
has a misuse among the dependencies
features [4], [5], [9]. For instance, if a full mandatory 
feature requires an optional feature, this optional feature 
became false optional [9].  

Ontologies have proven to be useful for dealing with 
defects in FMs. For instance, in [16], [17]
semantic relationships between the ontology concepts to 
define a set of rules to identify defects related 
conformance checking [6] of the FMs 
feature is required and excluded at the same time for 
another feature). These rules allow authors
ontology individuals (features) that cause each defect. 
Noorian et al also use ontologies to identify and fix
defects related to the conformance checking of the FM 
[18]. In particular, they use the Pellet
identifying defects in FMs represented with 
logic.  

III.  PROPOSED SOLUTION

The framework proposed in this paper
this section through two sub-sections. The first one 
presents how we construct the Feature Model Ontology
The Feature Model Ontology represents concepts of a 
meta-model of FMs. The second one presents
we call Defect analyzer. This tool identifies
optional features in FMs, identifies its caus
in natural language why these defects occur.
of our proposal framework is presented in Figure 2.

Figure 1.  GLP Feature Model based on the one proposed in [23]
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Figure 2.  Proposed framework overview

A. Feature Model Ontology

An ontology is a formal explicit specification for a 
shared conceptualization [29], [30]
FMs, ontologies help to identify and def
basic concepts and the dependencies among them

Ontologies comprises classes, properties, constraints, 
and individuals [31]. Classes are the m
to the ontology domain. Properties
properties or object properties. Object properties relate 
ontology individuals among them, whereas data
properties relate ontology individuals with concrete 
values, for example, an integer value.
the restrictions that individuals must 
class; and individuals represent objects in the domain of 
interest. In this paper, we use 
Feature Model Ontology (cf. Figure

Figure 3.  Proposed ontology to represent FM
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cf. Figure 3).  

 
Proposed ontology to represent FM 



The Feature Model Ontology represents the FMs 
concepts in the form of ontology. This representation 
allows us to exploit g the semantic relationships among 
the concepts involved in FMs. For instance, we can ask 
for features that have the same father, or features that are 
related by mandatory and exclude depethe same cies at 
same time. 

We constructed the Feature Model Ontology using the 
guide to construct ontologies proposed in [32], and 
adapting the UML-based FM meta-model proposed in [6] 
(cf. Figure 4). We separate the meta-model class Feature 
in the ontology classes NotRootFeature and RootFeature 
with the aim of representing in the ontology that a FM 
only has one root feature. In addition, in the Feature 
Model Ontology the meta-model classes correspond to 
classes of the ontology; the dependencies between meta-
model classes are represented as ontology object 
properties; and the attributes of the groupCardinality 
meta-model classes are represented as ontology datatype 
properties. Besides, the inheritance dependencies among 
the meta-model classes are represented as isA 
dependencies. It is worth noting that we do not consider 
feature attributes in our ontology (nor in our FM meta-
model) since attributes are not involved in the FM defects 
in which we are interested in this paper.   

Since we use ontology classes and properties to 
represent the FM meta-model, if an individual violates the 
conditions defined for the classes or properties during the 
population process, the ontology becomes inconsistent 
(this issue is beyond the scope of this paper, but is covered 
in [6] and [18]).  

The use of ontologies to represent FMs is not new; in 
fact, there are several works that use ontologies to 
represent FMs because ontologies increase the 
expressiveness level provided by FMs [13], [14]. Other 
authors are motivated by the fact that the ontological 
representation of FMs makes possible to verify 
consistency between the feature model and its meta-model 
[18]. Even others are motivated by the fact that the 
ontological representation allows inferring interesting 
information regarding the FMs; for instance, obtain 
sibling features [17].  

 

 
Figure 4.  FM meta-model based on the one proposed in [6] 

B. Defect analyzer 

Defect analyzer is the tool of our proposal that 
identifies and explains in natural language dead and false 
optional features. In particular, it receives as input the 
Feature Model Ontology and the FM to analyze, and 
produces as result the identified dead and false optional 
features (if any), the causes of each defect and one 

explanation in natural language for each identified cause. 
The Defect analyzer is composed of three parts: the 
transformer, the identifier of defects and the explainer. 
Following sub-sections explain and give details of each 
one of these modules.  

1) Transformer  
Transformer module is the responsible of populating 

the Feature Model Ontology with the elements of the FM 
to analyze. Populate an ontology consists in creating 
individuals in the classes of the ontology. First, the 
Transformer reads each element of the input FM, and 
second, it creates one individual in the corresponding 
ontology class and fills the properties of each individual.  

In our populated Feature Model Ontology, FM 
dependencies are individuals of one of the following 
ontology classes: Optional, Mandatory, Requires 
and Excludes. The class in which the Transformer 
creates each individual depends of the type of dependency 
in the FM. For instance, dependency OD2 (cf., Figure 1) 
is an individual of the Mandatory ontology class. 

All features of the FM are individuals by inheritance of 
the Feature class. Moreover, the FM root is an 
individual of the RootFeature ontology class, and all 
other features are individuals of the NotRootFeature 
ontology class. For instance, in our running example, GPL 
is an individual of the RootFeature ontology class, and 
Search is an individual of the NoRootFeature 
ontology class.  

Transformer fills the properties of each individual that 
it created using information obtained from the input. For 
instance, according to our Feature Model Ontology, 
individuals of ontology class Dependency (e.g., R3 in 
our running example) have the properties 
hasDependencySource (GPL) and 
hasDependencyDestination (Search). 

Henceforth other components of the Defect analyzer 
use Feature Model Ontology populated with the 
information of the FM for analyzing the FM.  

2) Identifier of defects  
Identifier of defects is the module that identifies dead 

and false optional features and their causes in the 
populated Feature Model Ontology.  

We define a set of rules that represent six specific cases 
of misuse among the FM dependencies that cause dead 
features, and three specific cases that cause false optional 
features.  Thus, when the Identifier of defects applies these 
rules on the populated Feature Model Ontology, the 
identified features are considered as dead or false optional, 
and each used rule is a cause that originates the identified 
dead or false optional features. 

The use of rules to detect dead and false optional 
features is not new. For instance, Van der Massen and 
Lichter [9] define six rules to identify defects in FODA 
models (using a feature notation with group cardinalities, 
as we do, these six rules become two because boolean 
dependencies can be represented using group 
cardinalities). However, the approach presented in this 
paper considers these two rules and seven more that we 
identified through our academic and industrial experience 
working with FMs. For each rule, we (i) specify the cause 
as a general explanation about the defect; (ii) specify the 
rule in first-order logic; (iii) present an explanation 



template; and (iv) present an example based in our 
running example (cf., Figure 1).  

We describe each rule with one or more Horn Clauses 
[33]. In our Horn Clauses, antecedents are conditions that 
must occur together for producing the analyzed defect, 
and the consequent is that a feature is dead or false 
optional.  

Our collection of 9 rules intends to find and explain the 
causes of dead and false optional features. The first rule is 
about optional features that become false optional when 
they are required by full mandatory features. The second 
rule is about optional features that become false optional 
when they make part of a group cardinality (with a full 
mandatory father) having one or several dead features into 
the bundle. The third rule is about optional features that 
become false optional when they are required by another 
false optional feature. The fourth rule refers to optional 
features that become dead when they are excluded by full 
mandatory features. The fifth rule is about optional 
features that become dead when they are excluded by false 
optional features. The sixth rule deals with optional 
features that become dead when one of their ancestors is 
also dead. The seventh rule is about optional features that 
become dead when they require dead features. The eighth 
rule is about optional features that become dead when they 
make part of a group cardinality that has one or several 
false optional features into the bundle. Finally, the ninth 
rule refers to optional features that become dead when 
they require features that make part of a group cardinality 
(with a full mandatory father), but the number of required 
features exceeds the upper bound of the group cardinality.  

In the rest of this section (i) we formalize in first-order 
logic each one of these rules; (ii) we present the template 
in natural language that each rule use to explain the cause 
of the particular defect that raise the rule—we call that 
“explanation template”; and (iii) we show how this rule 
can be used in our running example (cf. Figure 1).  We 
use the following first-order logic predicates, functions 
and sets to formalize the rules as Horn Clauses: 

• requires(x,y): This predicate indicates that 
feature x requires feature y. In our running example 
requires (Cicle,DFS). 

• excludes(x,y): This predicate indicates that 
feature x and feature y are mutually exclusives. In 
our running example excludes(BFS,F2). 

• ancestor(x,y): This predicate indicates that 
feature x is an ancestor of feature y. In our running 
example ancestor (GPL,Weighted) and 
ancestor (GPL,Search). 

• nameDependency(x,y): This function returns 
the name of a given dependency that relates feature 
x with feature y. In our running example 
nameDependency(GPL,Search)  returns 
OD2. 

• ModelFeaturesSet: This set represents the 
collection of all features of a feature model. 

• OpSet: This set represents the collection of all 
optional features of a feature model. 

• FMSet: This set represents the collection of all full 
mandatory features of a feature model. 

• DeadSet: This set represents the collection of all 
dead features of a feature model. 

• FalseOptionalSet: This set represents the 
collection of all false optional features of a FM. 

Where 
OpSet ˄ FMSet ˄ DeadSet  ˄ 
FalseOptionalSet ⊆ ModelFeaturesSet 

 
For the sake of presentation of rules, false optional 

features with the acronym FO and dead features will be 
referred with the acronym DF. 

  
Rule FO1: an optional feature becomes false optional 
when a full mandatory feature requires an optional 
feature. 
Formalization: 

∀x∈ FMSet ,  ∀y ∈ OpSet: 
requires(x,y)→ y ∈ FalseOptionalSet  
Explanation template: Feature y is false optional because 
it is required for the full mandatory feature x in the 
dependency nameDependency(x,y). 
Application to the running example: Feature AF1 is false 
optional because it is required for the full mandatory 
feature Search in the dependency AD15. 
 
Rule FO2: an optional feature becomes false optional 
when it is grouped by a group cardinality (with a full-
mandatory father) having dead features. The feature must 
be selected to satisfy the lower group cardinality. 
Formalization: 
z= group cardinality (with father 
feature being full mandatory) of the 
FM at hand 
m =Lower bound of z 
DFGroupSet= {Dead features that belong 
to z} 
NotDFGroupSet={Features not dead that 
belongs to z} 
GroupFeaturesSet= {Features grouped by 
the group cardinality z} 
Where, 
GroupFeaturesSet ⊆ ModelFeaturesSet  ˄ 
NotDFGroupSet = GroupFeaturesSet \ 
DFGroupSet  
Then, 
|NotDFGroupSet |= m →   
NotDFGroupSet ⊆ FalseOptionalSet  
Explanation template: Feature y is false optional because 
it must be selected to satisfy the lower bound m of the 
group cardinality z to which it belongs.  
Application to the running example: Feature AF10 is 
false optional because it must be selected to satisfy the 
lower bound 1 of the group cardinality AD24 to which it 
belongs.  
 
Rule FO3: an optional feature becomes false optional 
when it is required by another false optional feature. 



Formalization: 

∀x ∈ FalseOptionalSet, ∀y ∈ OpSet: 
requires(x,y)→  y ∈ FalseOptionalSet 
Explanation template: Feature y is false optional 
because it is required by the false optional feature x 
through the dependency nameDependency(x,y). 
Application to the running example: Feature AF9 is false 
optional because it is required by the false optional 
feature AF1 through dependency AD20 
 
Rule DF1: an optional feature becomes dead when it is 
excluded by a full mandatory feature. 
Formalization: 

∀x ∈ FMSet, ∀y ∈ OpSet: 
excludes(x,y)→  y ∈ DeadSet 
Explanation template: Optional feature y is dead because 
it is excluded by the full mandatory feature x through the 
dependency nameDependency(x,y). 
Application to the running example: Optional feature 
AF11 is dead because it is excluded by the full 
mandatory feature AF8 through dependency AD17. 

 
Rule DF2: an optional feature becomes dead when it is 
excluded by a false optional feature. 
Formalization: 

∀x ∈ FalseOptional,  ∀y ∈ OpSet : 
excludes(x,y)→  y ∈ DeadSet 
Explanation template: Optional feature y is dead because 
it is excluded by the false optional feature x through the 
dependency nameDependency(x,y). 
Application to the running example: Optional feature 
AF7 is dead because it is excluded by the false optional 
feature AF9 through dependency AD18. 

 
Rule DF3: a feature becomes dead when one of its 
ancestors is dead. 
Formalization: 

∀x ∈ DeadSet, ∀y ∈ ModelFeaturesSet: 
ancestor(x,y)→  y ∈ DeadSet 
Explanation template: Feature y is dead because x, its 
ancestor feature, is a dead feature too.  
Application to the running example: Feature AF14 is 
dead because AF11, its ancestor feature, is a dead feature 
too. Features AF12 and AF13 are also identified as dead 
features for this rule. 
 
Rule DF4: a feature becomes dead when it requires 
another dead feature. 
Formalization: 

∀x ∈ ModelFeaturesSet, ∀y ∈ DeadSet: 
requires(x,y)→  x ∈ DeadSet 

Explanation template: Feature x is dead because it 
requires the dead feature y. The name of the requires 
dependency is nameDependency(x,y). 
Application to the running example: Feature AF15 is 
dead because it requires the dead feature AF12. The 
name of the requires-type dependency is AD16. 
 
Rule DF5: a feature becomes dead if it belongs to a 
group cardinality and the number of false optional 
features is equal to the cardinality upper bound. 
Formalization: 
Z: group cardinality of the FM at hand 
n: Upper cardinality of z 
FOGroupSet: set of false optional 
features that belong to z 
NotFOGroupSet: set of features not 
false optional that belongs to z} 
GroupFeaturesSet= set of features 
grouped by the group cardinality z 
Where, 
FOGroupSet ⊆ GroupFeaturesSet⊆ 
ModelFeaturesSet ˄ 
NotFOGroupSet = GroupFeaturesSet \ 
FOGroupSet 
Then, 
|FOGroupSet| = n →  NotFOGroupSet ⊆ 
DeadSet   
Explanation template: Feature y is dead because it cannot 
be selected from its group cardinality z, since the upper 
bound n of the group cardinality z is attained with the 
following false optional features FOGroupSet. 
Application to the running example: Feature AF2 is dead 
because it cannot be selected in its group cardinality 
AD23, since the upper group cardinality 1 of AD23 is 
satisfied with the following false optional features: F1. 
 
Rule DF6: an optional feature becomes dead if it requires 
features that belongs to group cardinality, but the number 
of required features is greater than the upper bound of the 
group cardinality. 
Formalization: 
z: group cardinality (with father 
feature being full mandatory) of the 
FM at hand 
n: upper cardinality of z 
DFGroupSet: set of dead features that 
belong to z 
IncludesFeaturesSet: set of features 
that belong to z and are includes by 
another feature of the FM 
GroupFeaturesSet: set of features 
grouped by z 
Where, 
IncludesFeaturesSet ⊆ 
GroupFeaturesSet⊆ ModelFeaturesSet 



Then, 

∀y ∈ OpSet, ∀x ∈ GroupFeaturesSet: 
includes(y,x) → x∈ IncludesFeaturesSet 
|IncludesFeaturesSet| ≥ n →y ∈ deadSet 
Explanation template: Feature y is dead because it 
requires the feature(s) IncludesFeaturesSet that 
belong(s) to the group cardinality z.  Required feature(s) 
exceed(s) the upper bound n of the group cardinality z. 
Application to the running example: Feature 
Connected is dead because it requires the feature(s) 
Directed, Undirected that belong(s) to the group 
cardinality OD26.  Required feature(s) exceed(s) the 
upper bound 1 of the group cardinality OD26. 

It is worth noting that aforementioned rules are 
interrelated. These relationships are presented in Figure 5. 
In this figure, identification process begins with the dead 
features found by rule DF1 and false optional features 
found by rule FO1. Then, rules DF2, DF5 and DF6 
receive as input the identified false optional features, and 
identify dead features. Inversely, rule FO2 receives as 
input dead features and identifies false optional features. 
Rule FO3 receives false optional features as input and 
identifies new false optional features, and rules DF3 and 
DF4 receive dead features as input and identify new dead 
features.  The process ends when the Identifier of defects 
executes all rules and it does not find new dead or false 
optional features. On the contrary, if new dead and false 
optional features appear, the Identifier of defects runs 
again all rules using false optional and dead features as 
input to find new ones. 

3) Explainer  
Once the Identifier of defects identifies dead and false 

optional features and their causes, the Explainer constructs 
explanations in natural language according to the rule 
used to find each defect. In the explanation process, the 
Explainer executes the following tasks:  

• It obtains the rule used to identify each false 
optional or dead feature. 

• It takes the explanation template associated with 
the rule identified in the previous task.  

• It fills the explanation template at hand with the 
corresponding instances from the populated 
Feature Model Ontology.  

It is worth noting that if a feature is involved in more 
than one rule, the Identifier of defect identifies all different 
rules used to identify this dead or false optional feature. 
Consequently, the Explainer makes for each rule a 
different explanation. This is the case of F2 in our 
example: (i) rule DF1 identifies that feature F2 is dead 
because it is excluded by the full mandatory feature F3; 
and (ii) rule DF5 identifies that feature F2 is dead because 
it belongs to a group cardinality <1..1> where one the 
features of the bundle (i.e., the children of F1) is a false 
optional feature (due to the dependency A15). In that case, 
the Explainer provides an explanation corresponding to (i) 
and another one corresponding to (ii). 

IV.  IMPLEMENTATION  DETAILS 

The method, ontology and rules presented above were 
implemented into the prototype tool called Defect 
analyzer using Java, and the JESS (Java Expert System 
Shell)1 reasoner to execute queries in SQWRL [34]. The 
tool was tested with the Graph Product Line case study, 
and with 30 random FMs generated with the 
BEnchmarking and TesTing on the analYsis (BeTTy) [35] 
tool. Our approach was implemented in two stages. In the 
first stage, we used Protégé 3.4.8 for creating the Feature 
Model Ontology to represent concepts of the FMs meta-
model. In the second stage, we developed the Defect 
analyzer.  

Broadly, each component of the Defect analyzer works 
as follows:  

(i) Transformer: It uses a library available in the 
SPLOT website2, for reading FMs in the Simple XML 
Feature Model (SXFM) format. Then, this component 
uses Jena3 to manipulate the ontology inside Java for 
creating individuals in the Feature Model Ontology with 
the information of the analyzed FM. When the 
Transformer ends populating the ontology, it creates a 
new OWL4 file with the Feature Model Ontology 
populated with the information of the analyzed FM. The 
OWL file of our Feature Model Ontology populated with 
the running example is available online5. 

 (ii) Identifier of defects: It uses SQWRL to implement 
the rules proposed in the Section III. A SQWRL query 
comprises an antecedent and a consequent expressed in 
terms of OWL classes and properties. The antecedent 
defines the criteria that individuals must satisfy to be 
selected, and the consequent specifies the individuals to 
select in the query results. In our approach, SQWRL use 
classes and properties defined in the Feature Model 
Ontology to query for information of the FM represented 
as ontology individuals. Identifier of defects executes and 
manipulates all rules from Java.  

For the sake of space, we only present the source code 
of the first rule (i.e., FO1), in which full mandatory 
features require optional features. Nevertheless, our nine 
rules have a similar structure. The whole code is available 
for download from Internet5. 

 
(1)  Requires(?z) ^   
(2)  Optional(?w) ^  
(3) hasDependencyDestination(?w, ?a) 
(4) hasDependencySource(?z, COMODIN) ^   
(5) hasDependencyDestination(?z, ?a) ^ ->   
(6) sqwrl:selectDistinct(?a) 
 
Lines 1 to 5 define conditions under which a feature can 

be considered false optional. Line 1 represents any 
instance of the ontology class Requires and line 2 

                                                           
1  http://herzberg.ca.sandia.gov 
2  http://www.splot-research.org 
3  http://jena.apache.org 
4  The Ontology Web Language (OWL) is a language used to 

describe the classes and dependencies between ontologies. For more 
information, please visit http://www.w3.org/TR/owl-guide/  

5  https://sites.google.com/site/raulmazo/ 



 
Figure 5.  Relationship among our collection of rules

represents any instance of the ontology class Optional.  
Ontology classes Requires and Optional are 
subclasses of the ontology class Dependency in the 
Feature Model Ontology  (cf. Figure 3). Lines 3 to 5 use 
properties hasDependencyDestination and 
hasDependencySource to link a dependency with 
its related features (cf. Figure 3).First argument of these 
properties is an individual of the class Dependency and 
the second is an individual of the class Feature. Word 
COMODIN in line 3 is an argument that takes the values of 
individuals identified as full mandatory features. The 
value of COMODIN depends of each rule (e.g., in rule DF2 
COMODIN corresponds to false optional features, but in 
rule DF3, corresponds to dead features). Line 6 is the 
consequent of this query, which consists in selecting the 
feature ?a. Note that the SQWRL rule to identify dead or 
false optional features only selects in the consequent the 
false optional feature ?a that satisfy the rule, but it does 
not select the dependencies related to the defect.  For each 
obtained defect, the Explainer executes another SQWRL 
query to get the necessary information to complete the 
explanation, as follows: 

(iii) Explainer: Once the false optional or dead features 
are identified by the rules presented in (ii), the Explainer 
executes a new SQWRL query to get dependencies and 
other features related to the defect at hand and fill the 
explanation template of the corresponding rule. For 
instance, the following SQWRL obtains the dependency 
and the features related to each false optional feature 
obtained from rule FO1.   

 
(1) Requires(?z) ^ 
(2) hasDependencyDestination(?z,COMODIN)^ 
(3) hasDependencySource(?z,?b) -> 
(4) sqwrl:selectDistinct(?b) ^ 
(5) sqwrl:selectDistinct(?z) 
 

Lines 1 to 3 define necessary conditions that must 
satisfy individuals ?b and ?z to be selected in the query. 
Line 1 represents any instance of the ontology class 
Requires. Lines 2 and 3 define the features source and 
destination of the ontology class Requires. Word 
COMODIN in line 2 is the false optional feature found with 
the query presented in (ii). The consequent of this 
SQWRL query consists in selecting feature ?b requiring 
the false optional feature COMODIN and the requires-type 
dependency ?z from ?b to COMODIN. Thus, the 
explanation corresponding to the rule FO1 is as follows. 

“Feature COMODIN is false optional because it is 
required for the full mandatory feature ?b in the 
dependency ?z.” 

V. PRELIMINARY EVALUATION  

We assessed the precision, scalability and usability of 
our approach with 31 models clustered as presented in 
Table III. 

Our preliminary evaluation was undertaken in the 
following environment: Laptop with Windows 7 Ultimate 
of 32 bits, processor Intel® Core™ i5-2410M, CPU 2.30 
GHz, and RAM memory of 4,00 GB, of which 2.66 GB is 
usable by the operating system. 

1) Precision  
We tested our approach in three steps. First, we verified 

that it did not generate false positives. Second, we verified 
that the proposed solution identified 100% of dead and 
false optional features considered in our collection of 
rules. Finally, if the FMs had dead or false optional 
features, we manually validated that explanations 
corresponded to the case that produced the defect, and that 
the filled spaces in the explanation templates 
corresponded to real situation for each one of the models.  

In the first stage, we compared the dead and false 
optional features with the results obtained using FaMa 
[36] and VariaMos [37]. We found that our proposal 
identified the 100% of the dead and false optional features 
that satisfied our rules, with 0% false positive. For the 
second and third stage, we made a manual inspection of 
correctness over the running example and two 
models(randomly selected) of each cluster. We found that 
our proposal constructed correct explanations; i.e., they 
corresponded to the cause(s) that originated each defect.  

Figure 6 presents the number of dead and false optional 
features found in each analyzed FM.  

TABLE II.   
FEATURE MODELS COLLECTION BENCHMARK  

Number of 
features 

5 25 32 50 75 100 150 

Number of 
models 

5 5 1 5 5 5 5 

%  of requires 
and excludes 
relationship 

40 40 18 40 40 40 40 

  



2) Computational Scalability  
In order to make performance measurement, we 

executed five times each of the 31 models, which means 
155 (31x 5) queries. 

The time measures presented in Figure 7 are the 
average of the five executions of each model. Y-axis 
corresponds to computation time in milliseconds (ms) that 
took the Defect analyzer to execute all the tasks of our 
approach, and X-axis corresponds to the number of 
features of each model. According to results, our approach 
took less than 5 sg (5000 ms) executing the Defect 
analyzer in FM up to 100 features and took about two 
minutes on models with 150 features. 

 

 
Figure 6.  Number of defects identified by model size 

 
Figure 7.  Number of defects identified by model size 

3)  Usability 
In order to make more usable our approach, we 

developed a graphic presentation of our Defect analyzer. 
Our tool receives a FM, the one selected by the user with 
the “Choose file” button, in SXFM format. Then, when 
the user presses the “Analyze” button, the Transformer 
module, populating the Feature Model Ontology with the 
elements of the FM at hand. Then, the modules Identifier 
of defects and Explainer process the Feature Model 
Ontology with the individuals of the analyzed FM and 
present results to the user. Figure 8 corresponds to a 
snapshot of part of the feedback obtained from our tool 
when we analyzed dead and false optional features in our 
running example. For each found defect, our tool says 
what it corresponds to, the cause that origins it, and gives 
the corresponding explanation in natural language.  

 
Figure 8.  Snapshot corresponding to a part of the results generated 

from analyzing our FM running example 

VI.  RELATED WORK 

Two collections of approaches for FM defects cause 
identification can be met in the literature: those that use 
ontologies to represent and reason on FMs and the others.  

From the first category, Wang et al. [19] propose 
representing FMs and their constraints in OWL ontology 
language. In their proposal, the authors represent each 
feature as an ontology class, and each dependency as an 
ontology property. Their study identifies inconsistencies 
in FMs configurations and provides explanations for 
inconsistencies. However, their approach does not analyze 
the FM itself to identify the shortcomings. Abo et al. [17] 
propose to use ontologies to represent FMs and facilitate 
their integration when they represent different views of a 
product line. Additionally, these authors describe SWRL 
(Semantic Web Rule Language) rules to validate model 
consistency. They define each situation that creates an 
inconsistency as an antecedent, and the elements involved 
as the consequent. However, their research aims at 
facilitating integration of different FMs, whereas that our 
approach focuses on identifying and explaining dead and 
false optional features and their causes. Moreover, Lee et 
al. [15] propose to use ontologies to represent FMs in 
order to analyze their variability and commonality. Even if 
they use ontologies to represent FM, their approach is 
different to ours. They use ontologies to analyze the 
semantic similarity of the FM, whereas our approach uses 
ontologies to identify dead features and explain their 
causes. Noorian et al. [18] propose to use descriptive logic 
to: (i) identify inconsistencies in FMs represented in 
SXFM; (ii) identify inconsistencies in products configured 
from the product line; and (iii) propose possible 
corrections.  They implement their approach in a 
framework that uses OWL-DL to represent FMs and their 
configurations, and Pellet[28] as reasoner. We also use 
SXFM to represent FMs and description logic to represent 
our ontology. However, we focus on identifying and 
explaining dead and false optional features and not on 
conformance checking [6] as Noorian et al. do. Moreover, 
our approach could detect structural defects if we verify 
(using the corresponding Protégé’s function) the 
consistency of the ontology after populating it.  

Regarding the second category, several works were 
carried out to automatically identify dead features (and 
other defects) on FMs [3], [5], [7–10]. However, none of 
these works deals with identification of causes or 
explanations of dead and false optional features.  



Trinidad et al. [12] present an automated method for 
identifying and explaining defects, such as dead features 
or false optional features in FMs. The authors transform 
FMs into a diagnostic problem and then into a constraint 
satisfaction problem. They automated their approach in 
FaMa [36], an Eclipse Plug-in for automatic analysis of 
FMs. Their proposal identifies the dead features and false 
optional features, and minimum set of dependencies 
necessary to create such features. However, their approach 
works like a black box, hard-coded in FaMa, where user 
cannot create new rules to interrogate the FM. Besides, 
explanations generated by FaMa are not in natural 
language, but they are rather a list of dependencies that 
modeler should modify to remove the defect. Thus, FaMa 
gives the dependencies participating in the defect, but it 
does not explain the defect itself, which our approach 
does.  

In a more recent work, Trinidad et al. [11] use 
abductive reasoning to identify dead features and their 
causes. Unfortunately, authors do not provide any details 
or even an algorithm to implement their proposal. 

It is worth noting that FaMa finds and explains other 
dead and false optional features that our approach did not 
identify. This is because we have not implemented all the 
cases to identify and explain all causes of dead features or 
false optional features. FaMa identifies all cases because it 
uses a constraint satisfaction approach to identify dead 
features, false optional features and other defects on FMs. 
However, our rule-based approach is extensible, it allows 
us to explain in natural language why defects occur, and it 
allows us to analyze dead and false optional features when 
FMs are void [3], three aspects that FaMa does not 
support. 

VII.  CONCLUSIONS AND DISCUSSION 

In this paper, we proposed an ontological rule-base 
approach to analyze dead and false optional features. Our 
defect analysis consists in identifying dead and false 
optional features in FMs, identifying certain causes of 
these defects, and explaining these causes in natural 
language. To operationalize our proposal, we propose an 
OWL ontology for representing FM and we propose 9 
rules that represent certain causes that produce dead or 
false optional features and have associate an explanation 
in natural language. These rules were formalized in first-
order logic and implemented in SQWRL and Java. We 
validated our proposal with a well-known case study and 
with 30 random features models with until 150 features.  

The approach developed in this paper represents an 
innovative alternative to the ones found in literature [3], 
[5], [7–12], [16–19], because we not only identify dead 
and false optional features, but we also identify their 
causes and build explanations in a human compressible 
language. We believe that this information could avoid 
modelers take the same mistakes in others FMs. However, 
there are other cases outside of the scope of this proposal 
(e.g. identifying dead features when they are produced for 
mandatory features whose predecessor is an optional 
feature). Indeed, it is necessary to continue extending our 
solution to identify with other rules dead and false 
optional features.  

We are also interested in exploring dependency 
between dead features and void models, because we 
detected that many of our rules could identify void models 

if they are applied with mandatory and false optional 
features.  
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