
HAL Id: hal-00903718
https://paris1.hal.science/hal-00903718

Submitted on 12 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PER-MARE: Adaptive Deployment of MapReduce over
Pervasive Grids

Luiz Angelo Steffenel, Olivier Flauzac, Andrea Schwertner Charão, Patricia
Pitthan Barcelos, Benhur Stein, Sergio Nesmachnow, Manuele Kirsch

Pinheiro, Daniel Diaz

To cite this version:
Luiz Angelo Steffenel, Olivier Flauzac, Andrea Schwertner Charão, Patricia Pitthan Barcelos, Benhur
Stein, et al.. PER-MARE: Adaptive Deployment of MapReduce over Pervasive Grids. 8th Interna-
tional Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC’13), Oct 2013,
COMPIEGNE, FRANCE, France. pp.17-24. �hal-00903718�

https://paris1.hal.science/hal-00903718
https://hal.archives-ouvertes.fr

PER-MARE: Adaptive Deployment of MapReduce over Pervasive Grids

Luiz Angelo Steffenel∗, Olivier Flauzac∗, Andrea Schwertner Charão†, Patricia Pitthan Barcelos†,
Benhur Stein†, Sergio Nesmachnow‡, Manuele Kirsch Pinheiro§ and Daniel Diaz§

∗Université de Reims Champagne-Ardenne, Reims, France
{luiz-angelo.steffenel,olivier.flauzac}@univ-reims.fr

†Universidade Federal de Santa Maria, Santa Maria, Brazil
{andrea,pitthan,benhur}@ufsm.br

‡Universidad de la República, Montevideo, Uruguay
sergion@fing.edu.uy

§Université Paris 1 Panthéon-Sorbonne, Paris, France
{manuele.kirsch-pinheiro,daniel.diaz}@univ-paris1.fr

Abstract—MapReduce is a parallel programming paradigm
successfully used to perform computations on massive amounts
of data, being widely deployed on clusters, grid, and cloud
infrastructures. Interestingly, while the emergence of cloud in-
frastructures has opened new perspectives, several enterprises
hesitate to put sensible data on the cloud and prefer to rely
on internal resources. In this paper we introduce the PER-
MARE initiative, which aims at proposing scalable techniques
to support existent MapReduce data-intensive applications in
the context of loosely coupled networks such as pervasive and
desktop grids. By relying on the MapReduce programming
model, PER-MARE proposes to explore the potential advan-
tages of using free unused resources available at enterprises as
pervasive grids, alone or in a hybrid environment. This paper
presents the main lines that orient the PER-MARE approach
and some preliminary results.

Keywords-Pervasive computing; MapReduce; Big data

I. INTRODUCTION

The MapReduce programming paradigm [1] has become

a popular solution for rapid implementation of distributed

data-intensive applications, being supported on both grid and

cloud environments. Interestingly, while the emergence of

cloud infrastructures has opened new perspectives, several

enterprises hesitate to migrate their applications to the cloud,

as clouds present several security issues, when compared to

private or managed infrastructures such as grids or clusters.

When dealing with sensitive data, these enterprises prefer

therefore to rely on private infrastructures to develop their

applications. By proposing a pervasive grid environment

supporting a programming model such as MapReduce, we

can intend to explore the potential advantages of using free

unused resources structured as a pervasive grid, be it alone

or in a hybrid environment.

The PER-MARE initiative aims at the adaptation of a

popular MapReduce distribution for pervasive and desktop

grids, proposing scalable techniques to support existent

MapReduce-based, data-intensive applications, but in the

context of loosely coupled networks such as pervasive and

desktop grids.

We consider pervasive grids as a type of large-scale infras-

tructure with specific characteristics in terms of volatility,

reliability, connectivity, security, etc. In the general case,

pervasive grids rely on resources contributed by volunteers.

Desktop grids are a particular case of pervasive grids lever-

aging unused processing cycles and storage space available

within the enterprise. These environments present challeng-

ing deployment and context-awareness constraints, as het-

erogeneity, fault tolerance and resource volatility facts may

strongly impact the performance of such networks. Although

some works tried to address this problem before, PER-

MARE initiative innovates by adopting a two-fold devel-

opment approach: (i) on one hand, we wish to adapt a well-

known MapReduce implementation (Hadoop, for instance),

including context-aware elements that may allow its efficient

deployment over a pervasive or desktop grid; and (ii) on

the other hand, we shall work on the implementation of a

Hadoop-compatible API over a P2P distributed computing

environment originally meant for pervasive grids.

We believe that this double process will bring us better

insights on the deployment of MapReduce over perva-

sive grids. In this paper, we introduce the PER-MARE

approach and some preliminary results. We present PER-

MARE vision about a context-aware MapReduce, which

intends to handle high volatility of pervasive grid resources

by applying context-awareness techniques on tasks distri-

bution and scheduling. Such volatility, represented mainly

by nodes churn, affects both task and data distribution.

Context-awareness will allow to better adapt MapReduce

applications to this dynamic environment, but an appropriate

and fault tolerant infrastructure is also needed. We propose

here a P2P MapReduce implementation, which intends to

be an alternative implementation compatible with Hadoop

API and pervasive grids. The preliminary results of such

implementation are also presented in this paper. We believe

that providing a context-aware behavior to MapReduce ap-

plications while keeping the compatibility with the API from

Hadoop will contribute to easily deploy existent applications

2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

978-0-7695-5094-7/13 $31.00 © 2013 IEEE

DOI 10.1109/3PGCIC.2013.10

17

2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

978-0-7695-5094-7/13 $31.00 © 2013 IEEE

DOI 10.1109/3PGCIC.2013.10

17

2013 Eighth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing

978-0-7695-5094-7/13 $31.00 © 2013 IEEE

DOI 10.1109/3PGCIC.2013.10

17

over pervasive grids and therefore evaluate the performance

and fault-tolerant issues related to such environments.
The rest of the paper is organized as follows: Section 2

presents an overview on related work. Section 3 introduces

the problem statement. Section 4 introduces PER-MARE

approach and proposals. Section 5 presents our preliminary

results, before concluding on Section 6.

II. BACKGROUND AND RELATED WORKS

Data-intensive distributed computing is an active research

topic. The approaches to this problem include programming

paradigms and supporting infrastructures. In this section, we

present the MapReduce paradigm and discuss some impor-

tant issues and related works concerning the deployment

of MapReduce applications over pervasive and desktop grid

infrastructures.

A. About MapReduce
MapReduce [1] is a parallel programming paradigm suc-

cessfully used by large Internet service providers to perform

computations on massive amounts of data. After being

strongly promoted by Google, it has also been implemented

by the open source community through the Hadoop project,

maintained by the Apache Foundation and supported by

Yahoo! and even by Google itself. This model is currently

getting more and more popular as a solution for rapid im-

plementation of distributed data-intensive applications. The

key strength of the MapReduce model is its inherently high

degree of potential parallelism that should enable processing

of petabytes of data in a couple of hours on large clusters

consisting of several thousand nodes.
A MapReduce computation takes a set of input key/value

pairs, and produces a set of output key/value pairs. The

user of the MapReduce paradigm expresses the computation

through two functions:

1) map, that processes a key/value pair to generate a set

of intermediate key/value pairs; and

2) reduce, that merges all intermediate values associated

with the same intermediate key. The framework takes

care of splitting the input data, scheduling the jobs’

component tasks, monitoring them, and re-executing

the failed ones.

Furthermore, when associated with a distributed filesys-

tem (HDFS, in the case of Hadoop), MapReduce can im-

prove its performance by minimizing data transfers over the

network.
A few typical examples of simple MapReduce applica-

tions include counting URL Access Frequency by processing

web page requests, creating reverse Web-link graph or an

inverted index from large set of documents.

B. Data-intensive applications on Pervasive and Desktop
Grids

Although desktop grids have been very successful with

projects such as Seti@Home [2], Folding@home [3] and

others, data-intense computing on these environments is a

still a promising area: for now, desktop grids have mostly

focused on loosely coupled parallel applications with few

I/O and without dependencies between the tasks. Some

major achievements combining their huge storage potential

with their processing capability are expected. They would

impact the applications requiring an important volume of

data input storage with frequent data reuse and limited

volume of data output. The MapReduce programming model

adapts well to this class of applications, and there is a

growing interest in supporting MapReduce on desktop grids.

Since enabling MapReduce on pervasive and desktop

grids raises many research issues, we can decompose this

problem in two subtopics: data distribution and storage and

data processing.

There are two approaches to distribute large volume

of data to large number of nodes distributed on Internet.

The first approach relies on P2P protocols where peers

collaboratively participate to the distribution of the data by

exchanging file chunks. In [4] and [5], authors investigate

the use of the Bittorrent protocol with the XtremWeb and

BOINC Desktop Grid in the case of data-intense bag of

tasks application. [6] relies on a JXTA platform, deploying

two overlay networks, M-net and S-net (master and slave,

respectively), which mimics the master-slave coordination

mechanism from Hadoop. Note that if the P2P approach

seems efficient, it assumes that volunteers would agree that

their PC connects directly to another participant’s machine

to exchange data. Unfortunately, this could be seen as a

potential security threat. It is unlikely to be widely accepted

by users. This drawback has so far prevented adoption of

P2P protocol by major volunteer computing projects. The

second approach is to use a content delivery approach where

files are distributed by a secure network of well-known and

authenticated volunteers [7] [8]. This approach is followed

by the ATTICS project [9] (Peer-to-Peer Architecture for

Data-Intensive Cycle Sharing). Instead of retrieving files

from a centralized server, workers get their input data from

a network of cache peers organized in a P2P ring.

Several systems have been proposed to aggregate unused

storage of desktop workstation within a LAN. Farsite [10]

builds a virtual centralized file system over a set of untrusted

desktop computers. It provides file reliability and avail-

ability through cryptography, replication and file caching.

Freeloader [4] fulfills similar goals but unifies data storage as

a unique scratch/cache space for hosting immutable datasets

and exploiting data locality, allowing to persistently store

data on desktop PCs.

Lin et al. [11] discuss limitations of MapReduce imple-

mentations over volatile, non-dedicated resources. They pro-

pose a system called MOON (MapReduce On Opportunistic

eNvironment), which extends Hadoop in order to efficiently

deal with the high unavailability of resources in desktop-

based volunteer computing environments. MOON relies on

181818

a hybrid architecture, where a small set of dedicated nodes

are used to provide resources with high reliability, in contrast

to volatile nodes which may become inaccessible during

computations. Their goal is somewhat similar to ours, but

their solution based on dedicated nodes does not fit well to

more dynamic environments as pervasive grids.

Due to the simplicity of its processing model (map and

reduce phases), data processing can be easily adapted to a

given distributed middleware, which can coordinate tasks

through different techniques (centralized task server, work-

stealing/bag of tasks, speculative execution, etc.). Never-

theless, good performances can only be achieved through

the minimization of data transfers over the network, which

is one of the key aspects of Hadoop HDFS filesystem.

Only few initiatives associate data-intense computing with

large-scale distributed storage on volatile resources. In [12],

the authors present an architecture following the super-peer

approach where the super-peers serve as cache data server,

handle jobs submissions and coordinate execution of parallel

computations.

The deployment of MapReduce over pervasive and desk-

top grids exposes most of the challenges presented in

this section with respect to data distribution, storage and

processing. At the moment there is no single solution that

solves all these issues together. When considering pervasive

grids, where heterogeneity is a major characteristic, data

processing/scheduling must be driven by contextual infor-

mation (resources characteristics, node reliability, network

performance, data location) in order to achieve the expected

processing performance.

C. Adaption to the Computational Context

As cloud computing has leveraged the use of MapReduce,

it is natural that most MapReduce distribution have been tai-

lored to such environments. For instance, most IaaS clouds

use sets of virtual machines that share similar characteristics

such as computational power and memory and, in such

cases, MapReduce does not require specific adaption to the

computational context as all virtual machines are similar.

As a consequence, most users simply rely on MapReduce

default configurations such as the number of reduce tasks by

machine, the maximum memory, etc. Although this behavior

can be modified through property files, there is no mecha-

nism to automatically detect and modify these parameters.

When dealing with a heterogeneous environment such as a

pervasive grid, MapReduce must be able to automatically

tune to the nodes characteristics.

While the computational context is tightly related to the

processing power of the resources, it also impacts other

aspects such as fault-tolerance and data storage. Indeed,

Hadoop allow a certain number of duplicated processes/data

in order to circumvent fault situations. If the context on

pervasive grid is not considered, tasks may be inefficiently

allocated or even disappear if the node volatility is high.

Similarly, HDFS tries to place data for the map and reduce

phases as closes as possible to the processes/tasks that will

need it, as to reduce the (slow) access over the network.

In a pervasive grid, the placement policy must account also

on the volatility and speed of the resources, preventing data

losses. While the contextual information required for the

adaption of MapReduce can be obtained from the system

properties (CPU and network speed, number of cores, mem-

ory size, etc.), the diffusion and analysis of such information

must be tightly integrated into the MapReduce framework

to boost the platform efficiency. For this reason, context-

awareness [13] and context distribution [14] are important

elements to be considered.

III. PROBLEM STATEMENT

One of the first challenges a user faces when deploying

MapReduce is that its most known and popular implementa-

tion, Hadoop, requires a highly structured environment such

as a grid or a cloud to be deployed. For instance, Hadoop

relies on a collection of tools (Hadoop Core, HDFS, etc.)

developed by different Apache subprojects, which interact

through a complicate set of master and slave daemons. As

a result, Hadoop installation, although well documented,

requires a stable set of machines known at startup time.

Please note that the installation procedure lacks of automatic

context adaption, forcing the administrator to manually de-

fine the characteristics of the resources, such as the number

of cores of each machine.

Together, these elements prevent a user to quickly launch

MapReduce over unused internal resources (e.g. an enter-

prise desktop grid) or over a volunteer network where nodes

join and leave the network dynamically. Some authors [6],

[15] addressed this problem by developing P2P frameworks

compatible with the MapReduce paradigm. While proposing

interesting solutions for the distribution and fault tolerance

issues, these frameworks have their own APIs that are not

compatible with application codes written for Hadoop.

Our project is precisely addressing this point: proposing

scalable techniques to support existent Hadoop applications

in the context of loosely coupled networks such as pervasive

grids. We consider pervasive grids as a type of large-

scale infrastructure with specific characteristics in terms of

volatility, reliability, connectivity, security, etc. According

to Parshar and Pierson [16], pervasive grids represent the

extreme generalization of the grid concept, in which the

resources are pervasive. For these authors, pervasive grids

seamlessly integrate pervasive sensing/actuating instruments

and devices together with classical high performance sys-

tems. In the general case, pervasive grids rely on resources

contributed by volunteers, but these resources are extremely

volatile. They may appear and disappear from the grid,

according their availability. Desktop grids are a particular

case of pervasive grids leveraging unused processing cycles

and storage space available within the enterprise.

191919

However, contrarily to simple desktop grids, general per-

vasive grids have to deal with a more dynamic environment

in a transparent way. Indeed, mobile devices should be

able to come into the environment in a natural way, as

their owner moves [17]. Devices from different natures,

from the desktop and laptop PCs until the last generation

tablets, should be integrated in seamlessly way. It results an

environment characterized by: (i) the volatility of its compo-

nents, whose participation on the grid is notably a matter of

opportunity and availability; and (ii) by the heterogeneity of

these components, whose capabilities may vary on different

aspects (platform, OS, memory and storage capacity, net-

work connection, etc.). Besides, the internal status of these

devices may also vary during their participation into the grid

environment. For instance, during the execution of a job, a

mobile device integrated to a pervasive grid may change its

network connection, passing from a fixed connection to a

wireless one. The same can be observed with the available

memory: after starting a job, device’s owner may start new

applications that modify device memory status.

Pervasive grids environments have to deal with such addi-

tional constraints related to the heterogeneity and volatility

of the resources. In such environments, it is essential to

adapt the application to the network variable behavior and

to coordinate the resources (task scheduling, data placement,

etc.). According to Coronato & De Pietro [17], pervasive

grid environments should be able to self-adapt and self-

configure in order to incoming mobile devices. We strongly

believe that context-awareness is needed in order to support

such self-adaption. Context-awareness can be defined as the

ability of a system to adapt its operations to the current

context, aiming at increasing usability and effectiveness by

taking environmental context into account [18]. In order to

support environments changes, context-awareness becomes

a critical aspect to boost the efficiency of the applications

over pervasive grids.

Besides, considering the extreme development of mobile

devices inside organizations nowadays, the opportunistic use

of such resources as an internal pervasive grid appears as an

interesting alternative for those who hesitate to distribute

sensible data over cloud infrastructures. These still suffer

from security issues that prevent their application in some

cases. Nevertheless, in order to be fully operational, perva-

sive grids environment have to first tackle problems related

to its dynamic nature.

IV. THE PER-MARE APPROACH

Given the problems presented above, we propose to ad-

dress the lack of context adaptation of MapReduce applica-

tions over pervasive grids all while keeping the compatibility

with MapReduce most popular implementation, Hadoop. To

meet this global goal, several aspects need to be investigated.

Our approach is to improve the behavior of MapReduce-

based applications on pervasive grids using a two-fold

investigation method. Hence, to better understand the el-

ements that may impact the deployment of MapReduce

over pervasive grids, our teams investigate the problem

through two different approaches: on the one hand, we shall

modify Hadoop as to implement automatic tuning of the

nodes, simplifying therefore the deployment procedure over

pervasive nodes. On the other hand, the second approach

relies on the adaptation of a distributed computing platform

(CONFIIT [19]) to make it compatible with the MapReduce

paradigm and, more specifically, with Hadoop’s API.

We believe that this double approach is essential to under-

stand and cover all the facets of the problem. By comparing

these two approaches "side by side" we can propose effective

solutions for pervasive grids.

In order to validate our developments, we target a scalable

execution across multiple sites with real-life workloads from

existing applications. A distributed desktop grid among our

institutions shall provide important insights on the adapt-

ability to the heterogeneity of resources and the dynamic

nature of the networks. In addition, the Grid5000 platform

(https://www.grid5000.fr) will provide the additional experimen-

tal infrastructure to explore the scalability issues of our

work.

A. Towards context-aware MapReduce

In order to cope with pervasive grids, MapReduce imple-

mentations have to deal with issues mainly related to nodes

volatility and heterogeneity of such environments. Indeed,

dynamic nature of pervasive environments demands adapting

to changing operating conditions and to enable more efficient

and effective operation while avoiding system failure [20].

Context-awareness is then needed in order to cope with such

changing environments.

Unfortunately, as discussed previously, Hadoop was not

designed to support such changing environment, with re-

sources that may appear and disappear from the environment

or new resources that can be integrated opportunistically,

neither with active resources whose capabilities may also

vary during the execution. Although several MapReduce

implementations can handle nodes disconnection, most of

them cannot support a smooth re-connection of a node after

a disconnection period or the addition of a new node. Indeed,

Hadoop only allow new nodes to join the network through

the restart of the entire daemon network. This means that

they cannot fully handle mobile devices, which are often

characterized by frequent disconnection and re-connection.

They cannot either discover for new nodes that were not

previously declared in the configured cluster. Such behavior

limits the use of such implementations, and mainly Hadoop,

over pervasive grids.

In order to deal with such limitation, PER-MARE intends

to propose a context-aware implementation of Hadoop. Our

proposal is to introduce into Hadoop a lightweight context

middleware, allowing to dynamically feed Hadoop platform

202020

and applications with context information. Such information

could then be used for data and task scheduling, in order to

fully benefit from pervasive grids.

Nevertheless, to reach this goal, several challenges should

be tackled. First, nodes availability should be observed. New

nodes should be integrated on the grid on the fly, as well

as disconnected nodes should be able to reintegrate the grid

once available again. This means that nodes should be able

to dynamically join and leave pervasive grid. A P2P behavior

is needed, in which nodes discover other nodes and inform

them about their availability. Such P2P behavior supposes to

extend heartbeat mechanism traditionally used by Hadoop to

identify nodes failures in order to allow nodes to join the

grid during execution.

Context information about the nodes themselves should

also be observed, and this without a significant impact on

the nodes performance. Different context information can be

observed: node location, available memory, storage, network

latency, etc. Such context information set must be extensible.

New context information should be easily integrated on it. A

plugin-based mechanism, such as [21], can be used in order

easily plug new sensor capabilities on the platform.

Besides, context information about a node should be

relayed to the others nodes in order to allow an efficient

data and task schedule inside the pervasive grid. In other

words, a context distribution mechanism, similar to [14],

should be considered. Such mechanism should integrate

heartbeat mechanism in order to couple context information

with nodes-alive signal, forming a lightweight P2P context

distribution mechanism.

In order to handle such challenges, we need first to

study the feasibility of such proposals on Hadoop platform.

Hadoop is composed by a complex set of daemons and

components involved on the multiple aspects of HDFS and

MapReduce execution. Modify such ecosystem can reveal

itself a delicate task. Thus, an initial study about Hadoop

internal infrastructure has already started [22], [23]. By using

failure injection techniques, this study has demonstrated

Hadoop vulnerabilities concerning nodes failures, notably

when such failures concern master data nodes. This confirms

our opinion that more flexible mechanisms are necessary in

order to allow Hadoop applications to fully benefit from

pervasive grid environments. Our feasibility study is still in

process, and we expect to publish results soon.

B. MapReduce on a P2P distributed computing environment

Due to its simple task model, MapReduce can be easily

implemented in a distributed computing environment. In

our project, we rely on the P2P distributed computing

middleware like CONFIIT (Computation Over Network for

FIIT) [19]. In CONFIIT, the programmer needs to decide how

to divide the problem into a finite number of independent

tasks, and how to compute each individual task. This is

the same principle of MapReduce map and reduce steps,

which can be considered as a sequences of Finite number

of Independent and Irregular Tasks (FIIT [24]) problems.

The CONFIIT framework is structured around collabora-

tive nodes connected over a logical oriented ring overlay

network. Communication between nodes is achieved using

a token-like mechanism, which carries the state of com-

putation around the ring. Task status (and partial results)

are broadcasted among the nodes, which contributes to the

coordination of the computing tasks and form a global view

of the calculus.

A node owns the different parameters of the current

computations (a list of tasks and associated results). It is

able to locally decide which tasks still need to be computed,

and can carry the work autonomously if no other node can

be contacted. If later a node reintegrates a community, it is

able to share the results from the tasks it completed and re-

synchronize its task’s list. A simple scheduling mechanism

randomly rearrange the list of tasks at each node, which

helps the computation of tasks in parallel without requiring

additional communication between nodes.

1) Programming models:
Since constraints of a given application could be different

and sometimes in contradiction (fault tolerance, efficiency,

etc.), CONFIIT offers two main programming models: dis-

tributed and centralized mode.

The distributed mode allows a high fault tolerance level

in the computation since task results are distributed to each

node in the community. Thus, a broken computation can be

re-launched using already computed tasks. Figure 1(a) shows

information exchanges in the community for a distributed

application. At first, the launcher sends the computing re-

quest to a node. The request is propagated along the com-

munity. During computation, results of individual tasks are

propagated across the community such that each node could

locally store all individual results (data blocks). Concurrently

to the computations, information on the global computation

is also exchanged among nodes.Besides, it is worth noting

that the launcher only needs to be connected during the

initiation phase. At the end of the computation, the global

result can be retrieved from any node in the community.

The centralized mode concentrates the storage on a single

node (the job launcher), which reduces the global load of

storage space, but reduces fault tolerance. As this mode is

too restrictive for a pervasive environment, we prefer to rely

on the Distributed mode on the remaining of this paper.

2) Using CONFIIT for MapReduce:
CONFIIT offers an interesting platform for building a P2P

MapReduce implementation. Its fault tolerant characteristics

make it particularly appropriate for pervasive grid. Thus, we

are introducing into CONFIIT a MapReduce implementation

inspired by Hadoop API. This first implementation intends

allowing comparing traditional Hadoop implementation with

a P2P implementation of MapReduce, leveraging advantages

and inconvenients that shall be further explored in our future

212121

launcher

receiver

(a) Distributed mode

launcher

(b) Centralized mode
Figure 1. CONFIIT Programming modes

works.

When using CONFIIT, a MapReduce job can be expressed

as a two rounds execution, one handling Map tasks and

another handling Reduce tasks. Similarly to Hadoop, during

Map phase, several tasks are launched according the number

of input files. The number of tasks during the Reduce phase

is calculated based on the number of available nodes. Once

a round starts, each node starts a task from the shared

task list, and broadcasts its results at the end of the task’s

computation.

When using the distributed mode, MapReduce implemen-

tation over CONFIIT supports nodes failures as well as nodes

volatility, allowing nodes to dynamically leave and join the

grid. Indeed, as long as a task is not completed, other nodes

on the grid may pick it up. In this way, when a node fails

or leaves the grid, other nodes may recover tasks originally

taken by the crashed node. Inversely, when a node joins the

CONFIIT community, it receives a copy of the working data

and may pick up available (incomplete) tasks on the shared

task list. Such P2P-like behavior offers a better support for

more dynamic environments such as pervasive grids, and

also allows the joining of additional nodes, a feature that

usually lacks on Hadoop.

In the next session, we present the first results obtained

with a MapReduce prototype over CONFIIT. Besides, we

are also working on supplying on CONFIIT a fully com-

patible Hadoop API. Even if it is already possible to build

MapReduce-like applications over CONFIIT, porting Hadoop

applications to CONFIIT still requires additional adaptations.

We believe that by offering a fully compatible API, migrat-

CounterExample

MapReduceBase

<< Hadoop >>

MapReduce
Consumer

<< Confiit >>

Distributed

<< Confiit >>

Mapper
<< Confiit >>

Reducer
<< Confiit >>

WordCounter
<< Hadoop >>

Figure 2. Experimental application shared between Hadoop and Confiit
implementations

ing application from Hadoop API to CONFIIT will be easier,

offering an alternative P2P execution platform for existent

applications and also as a cheap testing platform.

V. PRELIMINARY RESULTS

In a first step to deploy MapReduce applications over a

pervasive network, we implemented a prototype version of

the classic WordCount application over CONFIIT. This pro-

totype uses a core application, independent from CONFIIT

or Hadoop, as show in Figure 2. This core application could

then be used on both prototypes, allowing a clear comparison

between both solutions. Besides, as illustrated in Figure 2, in

this first tentative, we rely on the Distributed mode for both

Map and Reduce parts, as it has interesting fault tolerance

properties that can be useful in a volatile environment, such

as full replication of partial results.

Our prototype reproduces the Map and Reduce phases

with two CONFIIT instances, one for each phase. The

computation of each task calls the map() or reduce()

methods from the core classes shared with the Hadoop

implementation. In the case of the Map job, each task

returns a list of <K’, V’> elements. For the Reduce job,

task solvers access the results from the previous job and

can therefore compute a word count <K’, V">. Because

the Distributed mode replicates all results over the entire

CONFIIT community, the Reduce tasks can read the results

from the Map instance directly from their hard drives.

While most parts of a MapReduce application can be

directly mapped to CONFIIT methods, one single difference

resides on the need to indicate the number of computing

tasks. Indeed, this behavior is automatized on Hadoop,

which tries to guess the required number of Map and Reduce

processes. In our prototype, this parameter was defined as to

mimic the behavior of Hadoop, i.e., by setting a number of

Map tasks to roughly correspond to the number of input files

and the number of Reduce tasks to correspond to the number

of computing cores in the CONFIIT nodes at the time Reduce

starts (this number may vary later, due to nodes volatility).

The experiments were conducted over 16 machines on a

Grid’5000 cluster 1. Each machine is composed by 2 AMD

1http://www.grid5000.fr

222222

Figure 3. Comparison between Confiit and Hadoop over 16 nodes

Opteron 275 2.2GHz CPUs, totalizing 4 cores per node. A

Gigabit Ethernet interconnects the nodes.

For the experiments, we evaluate the performance of

both CONFIIT and Hadoop solutions when varying the total

amount of data and the number/size of input files. For each

data size, we measure 3 different input splits: one single

file, 1MB splits and 512kB splits. The reason for such

approach is to analyse the impact of the input files on the

map step from both solutions. For the input data, we chose

the Gutenberg Project Science Fiction Bookshelf CD2, which

contains more than 200 books in text format. The results

presented on Figure 3 represent the median of the performed

measures.

When analyzing the measures, two scenarios arise: for

small data volumes, our prototype outperforms Hadoop,

while Hadoop performs much better for large data sets. In

the first scenario, this is mostly due to CONFIIT lightweight

middleware. However, when the data volume augments,

we observe a huge performance slowdown. Investigation

shows that this is due to the task update pattern used on

the Distributed mode, which overloads the token passing

mechanisms and creates a bottleneck.

More specifically, the current implementation of CONFIIT

Distributed mode (see Figure 1(a)) spreads results using

"service" layer messages: the same messages that are used to

keep nodes updated about the tasks completion are used to

transmit the tasks results. For small data sets this procedure

poses no problem but when the amount of data grows, the

service layer becomes overloaded. As a consequence, nodes

finish by computing most of the tasks locally because few

updates are able to reach to the other nodes.

Future works will focus on correcting these problems, im-

proving massive data exchanges among CONFIIT nodes. This

can be achieved through the use of specific data exchange

channels (created on-demand by nodes that wish to complete

their data sets after receiving an update message), or through

a third-part P2P filesystem. Indeed, the use of a DHT with

controlled data replication is also an interesting solution to

2http://www.gutenberg.org/wiki/Gutenberg:The_CD_and_DVD_Project

ensure fault tolerance without relying on a full replication

of all data (an especial concern in the case of BigData). The

development of a context-awareness scheduling shall also

help on this effort, as data distribution and data locality are

successful elements of the Hadoop framework.

VI. CONCLUSION

The MapReduce programming paradigm and its most

known implementation, Hadoop, are becoming increasingly

popular. Particularly designed for distributed data-intensive

applications, MapReduce is being largely supported on

both grid and cloud environments. Nevertheless, Hadoop,

similarly to other MapReduce implementations, is designed

for dedicate environments. It does not support dynamic

environments, which are subject to nodes volatility and

changes on internal node state. As a consequence, Hadoop

does not fit pervasive grid environments, which are charac-

terized by such dynamism and by an opportunistic use of

heterogeneous nodes.

In this paper, we presented the PER-MARE initiative,

which aims at adapting MapReduce to pervasive grids. PER-

MARE proposes an innovative two-fold approach, aiming

at, on the one hand, adapting Hadoop implementation by

adding on it a context-aware behavior, and on the other hand,

proposing a P2P Hadoop compatible implementation, based

on CONFIIT platform. This paper presented the bases of

this two-fold approach and some preliminary results. Indeed,

although in an early stage, PER-MARE has already some

stimulating results. A first prototype of P2P MapReduce

over CONFIIT is already available at or project website3

and we are currently working on a Hadoop compatible API

for CONFIIT. Besides, we are currently analyzing Hadoop

internal infrastructure in order to allow Hadoop to support

nodes volatility, and especially dynamic joining of new

nodes.

Handling nodes volatility is a first step towards a context-

aware implementation of Hadoop. This next step intends

to allow a smart task and data schedule, based on node

context information such as location, available memory and

storage, network latency, etc. This context-aware effort will

be extended also to CONFIIT and our P2P MapReduce

implementation. In this case, context information will be

mainly used for adapting P2P data distribution over available

nodes, according execution context of each node.

ACKNOWLEDGMENTS

The authors would like to thank their partners in the PER-

MARE project and acknowledge the financial support given

to this research by the CAPES/MAEE/ANII STIC-AmSud

collaboration program (project number 13STIC07).

3http://cosy.univ-reims.fr/PER-MARE

232323

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data
processing on large clusters,” Commun. ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[2] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and
D. Werthimer, “Seti@home: an experiment in public-
resource computing,” Commun. ACM, vol. 45, no. 11, pp.
56–61, Nov. 2002. [Online]. Available: http://doi.acm.org/10.
1145/581571.581573

[3] A. Beberg, D. Ensign, G. Jayachandran, S. Khaliq, and
V. Pande, “Folding@home: Lessons from eight years of
volunteer distributed computing,” in Proceedings of the 23rd
IEEE International Symposium on Parallel Distributed Pro-
cessing (IPDPS ’09), 2009, pp. 1–8.

[4] S. Vazhkudai, V. Freeh, X. Ma, J. Strickland, N. Tammineedi,
and S. Scott, “FreeLoader: Scavenging desktop storage re-
sources for scientific data,” in Proceedings of Supercomputing
2005 (SC’05), Seattle, USA, 2005.

[5] F. Costa, L. Silva, G. Fedak, and I. Kelley, “Optimizing data
distribution in desktop grid platforms,” Parallel Processing
Letters, vol. 18, no. 3, pp. 391–410, Sep. 2008.

[6] F. Marozzo, D. Talia, and P. Trunfio, “A peer-to-peer frame-
work for supporting mapreduce applications in dynamic cloud
environments,” in Cloud Computing, ser. Computer Commu-
nications and Networks, N. Antonopoulos and L. Gillam, Eds.
Springer London, 2010, pp. 113–125.

[7] C. Mastroianni, P. Cozza, D. Talia, I. Kelley, and I. Taylor,
“A scalable super-peer approach for public scientific com-
putation,” Future Gener. Comput. Syst., vol. 25, no. 3, pp.
213–223, 2009.

[8] I. Kelley and I. Taylor, Bridging the Data Management Gap
Between Service and Desktop Grids. Springer, 2008.

[9] ——, “A peer-to-peer architecture for data-intensive cycle
sharing,” in Proceedings of the first international workshop
on Network-aware data management (NDM ’11). New York,
NY, USA: ACM, 2011, pp. 65–72.

[10] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken,
J. Douceur, J. Howell, J. Lorch, M. Theimer, and R. Watten-
hofer, “Farsite: federated, available, and reliable storage for
an incompletely trusted environment,” SIGOPS Oper. Syst.
Rev., vol. 36, pp. 1–14, 2002.

[11] H. Lin, X. Ma, J. Archuleta, W. Feng, M. Gardner, and
Z. Zhang, “Moon: Mapreduce on opportunistic environ-
ments,” in Proceedings of the 19th ACM International Sym-
posium on High Performance Distributed Computing (HPDC
’10), 2010, pp. 95–106.

[12] E. Cesario, C. Mastroianni, N. De Caria, and D. Talia,
“Distributed data mining using a public resource computing
framework,” Grids, P2P and Service Computing, 2010.

[13] D. Preuveneers, K. Victor, Y. Vanrompay, P. Rigole, and
M. Kirsch-Pinheiro, Context-Aware Adaptation in an Ecology
of Applications. IGI Global, 2009, ch. 1, pp. 1–25.

[14] M. Kirsch-Pinheiro, Y. Vanrompay, K. Victor, Y. Berbers,
M. Valla, C. Fra, A. Mamelli, P. Barone, X. Hu, A. Devlic,
and G. Panagiotou, “Context grouping mechanism for context
distribution in ubiquitous environments,” in OTM Conferences
(1), ser. Lecture Notes in Computer Science, R. Meersman
and Z. Tari, Eds., vol. 5331. Springer, 2008, pp. 571–588.

[15] DiscoProject. http://discoproject.org/.

[16] M. Parashar and J.-M. Pierson, “Pervasive grids: Challenges
and opportunities,” in Handbook of Research on Scalable
Computing Technologies, K. Li, C. Hsu, L. Yang, J. Dongarra,
and H. Zima, Eds. IGI Global, 2010, pp. 14–30.

[17] A. Coronato and G. D. Pietro, “Mipeg: A middleware
infrastructure for pervasive grids,” Future Generation
Computer Systems, vol. 24, no. 1, pp. 17 – 29, 2008.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0167739X07000593

[18] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on
context-aware systems,” Int. J. Ad Hoc Ubiquitous Comput.,
vol. 2, no. 4, pp. 263–277, Jun. 2007. [Online]. Available:
http://dx.doi.org/10.1504/IJAHUC.2007.014070

[19] O. Flauzac, M. Krajecki, and L. Steffenel, “Confiit: a middle-
ware for peer-to-peer computing,” Journal of Supercomputing,
vol. 53, no. 1, pp. 86–102, July 2010.

[20] A. Ferscha, Ed., Pervasive Adaptation : Next generation
pervasive computing research agenda. Institute for Pervasive
Computing, Johannes Kepler University Linz, 2011. [Online].
Available: http://www.perada.eu/research-agenda/

[21] N. Paspallis, “Middleware-based development of context-
aware applications with reusable components,” Ph.D. disser-
tation, University of Cyprus, 2009.

[22] E. Gondim, B. Prates, P. P. Barcelos, and A. Charão, “Análise
de alternativas para injeção de falhas no Apache Hadoop,”
in Proceedings of the XII Simpósio em Sistemas Computa-
cionais, Vitória, ES, Brazil, 2011.

[23] E. Gondim, P. P. Barcelos, and A. S. Charão, “Explorando o
framework de injeção de falhas do Apache Hadoop,” in Pro-
ceedings of the XIII Simpósio em Sistemas Computacionais,
Petrópolis, RJ, Brazil, 2012.

[24] M. Krajecki, “An object oriented environment to manage the
parallelism of the FIIT applications,” in Parallel Computing
Technologies, 5th International Conference, PaCT-99, ser.
Lecture Notes in Computer Science, V. Malyshkin, Ed. St.
Petersburg, Russia: Springer-Verlag, Sep. 1999, vol. 1662, pp.
229–234.

242424

