
HAL Id: hal-00874645
https://paris1.hal.science/hal-00874645v1

Submitted on 18 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimenting with X10 for Parallel Constraint-Based
Local Search

Danny Munera, Daniel Diaz, Salvador Abreu

To cite this version:
Danny Munera, Daniel Diaz, Salvador Abreu. Experimenting with X10 for Parallel Constraint-Based
Local Search. 13th International Colloquium on Implementation of Constraint and LOgic Program-
ming Systems (CICLOPS 2013), Aug 2013, Istanbul, Turkey. pp.33-47. �hal-00874645�

https://paris1.hal.science/hal-00874645v1
https://hal.archives-ouvertes.fr

Experimenting with X10 for Parallel

Constraint-Based Local Search

Danny Munera1, Daniel Diaz1, and Salvador Abreu2

1 University of Paris 1-Sorbonne, France
{Danny.Munera,Daniel.Diaz}@univ-paris1.fr

2 Universidade de Évora and CENTRIA, Portugal
spa@di.uevora.pt

Abstract. In this study, we have investigated the adequacy of the PGAS
parallel language X10 to implement a Constraint-Based Local Search
solver. We decided to code in this language to benefit from the ease of use
and architectural independence from parallel resources which it offers.
We present the implementation strategy, in search of different sources of
parallelism in the context of an implementation of the Adaptive Search
algorithm. We extensively discuss the algorithm and its implementation.
The performance evaluation on a representative set of benchmarks shows
close to linear speed-ups, in all the problems treated.

1 Introduction

Constraint Programming has been successfully used to model and solve many
real-life problems in diverse areas such as planning, resource allocation, schedul-
ing and product line modeling [18, 19]. Classically constraint satisfaction prob-
lems (CSPs) may be solved exhaustively by complete methods which are able
to find all solutions, and therefore determine whether any solutions exist. How-
ever efficient these solvers may be, a significant class of problems remains out of
reach because of exponential growth of search space, which must be exhaustively
explored. Another approach to solving CSPs entails giving up completeness and
resorting to (meta-) heuristics which will guide the process of searching for so-
lutions to the problem. Solvers in this class make choices which limit the part
of the search space which actually gets visited, enough so to make problems
tractable. For instance a complete solver for the magic squares benchmark will
fail for problems larger than 15 × 15 whereas a local search method will easily
solve a 100 × 100 problem instance within the lower resource bounds. On the
other hand, a local search procedure may not be able to find a solution, even
when one exists.

However, it is unquestionable that the more computational resources are
available, the more complex the problems that may be solved. We would therefore
like to be able to tap into the forms of augmented computational power which
are actually available, as conveniently as feasible. This requires taming various
forms of explicitly parallel architectures.

Present-day parallel computational resources include increasingly multi-core
processors, General Purpose Graphic Processing Units (GPGPUs), computer
clusters and grid computing platforms. Each of these forms requires a different
programming model and the use of specific software tools, the combination of
which makes software development even more difficult.

The foremost software platforms used for parallel programming include POSIX
Threads [1] and OpenMP [17] for shared-memory multiprocessors and multicore
CPUs, MPI [22] for distributed-memory clusters or CUDA [16] and OpenCL [13]
for massively parallel architectures such as GPGPUs. This diversity is a chal-
lenge from the programming language design standpoint, and a few proposals
have emerged that try to simultaneously address the multiplicity of parallel com-
putational architectures.

Several modern language designs are built around the Partitioned Global
Address Space (PGAS) memory model, as is the case with X10 [21], Unified
Parallel C [9] or Chapel [6]. Many of these languages propose abstractions which
capture the several forms in which multiprocessors can be organized. Other, less
radical, approaches consist in supplying a library of inter-process communication
which relies on and uses a PGAS model.

In our quest to find a scalable and architecture-independent implementation
platform for our exploration of high-performance parallel constraint-based local
search methods, we decided to experiment with one of the most promising new-
generation languages, X10 [21].

The remainder of this article is organized as follows: Section 2 present some
necessary background in Constraint-Based Local Search. Section 3 discusses the
PGAS Model and presents X10 language. The sources of parallelism in the Adap-
tive Search algorithm and its X10 implementation are the object of Section 4.
Section 5 describes the benchmarks used in our experiments. The results and
a discussion of the performance evaluation may be found in Section 6. A short
conclusion ends the paper.

2 Constraint-Based Local Search

It is possible to classify the method for constraint solving in two groups: com-
plete or incomplete methods. Complete methods always find a solution of the
problem, if any exists. There are two main groups of algorithms: search and
inference. Firstly, a representative complete search method is depth-first back-
tracking, which incrementally builds a solution exploring as far as possible along
each branch of the search space, such that no constraint is violated. If from some
point no value allows to extend the current partial assignment, it backtracks and
a previous assignment is reconsidered. Secondly, the inference methods use con-
straints to reduce the number of legal values for a variable, and propagate this
new domain to reduce other domain variables, finding a solution.

Incomplete methods, like Local Search, try to found a solution using limited
resources, however this type of methods does not guarantee neither to find one
solution nor to detect an inconsistency problem (no possible solution). Local

2

search is suitable for optimization problems with a cost function which makes
possible to evaluate the quality of a given configuration (assignment of variables
to current values). It also needs a transition function which defines, for each
configuration, a set of neighbors. The simplest Local Search algorithm start from
a random configuration, explores the neighborhood and then selects a promising
neighbor and moves there. This is a iteratively process that continues until a
solution is found.

In this study, a Local Search method, the Adaptive Search algorithm is se-
lected. The Adaptive Search [3, 4] is a generic, domain-independent constraint-
based local search method. This meta-heuristic takes advantage of the CSP
formulation and makes it possible to structure the problem in terms of variables
and constraints and to analyze the current assignment of variables more precisely
than an optimization of a global cost function e.g. the number of constraints that
are not satisfied. Adaptive Search also includes an adaptive memory inspired in
Tabu Search [11] in which each variable leading to a local minimum is marked
and cannot be chosen for the next few iterations. A local minimum is a config-
uration for which none of the neighbors improve the current configuration. The
input of the Adaptive Search algorithm is a CSP, for each constraint an error
function is defined. This function is a heuristic value to represent the degree of
satisfaction of a constraint and gives an indication on how much the constraint
is violated.

Adaptive Search is based on iterative repair from the variables and constraint
error information, trying to reduce the error in the worse variable. The basic
idea is to calculate the error function for each constraint, and then combine for
each variable the errors of all constraints in which it appears, thus projecting
constraint errors on involved variables. Then, the algorithm chooses the variable
with the maximum error as a “culprit” and selects it to modify later its value.

The purpose is to select the best neighbor move for the culprit variable,
this is done by considering all possible changes in the value of this variable
(neighbors) and selecting the lower value of the overall cost function. Finally,
the algorithm also includes partial resets in order to escape stagnation around
local minima; and it is possible to restart from scratch when the number of
iterations becomes too large. Algorithm 1 presents a particular implementation
of the Adaptive Search algorithm dedicated to permutation problems. In this
case all N variables have the same initial domain of size N and are subject to
an implicit all-different constraint.

3 PGAS model and X10

The current arrangement of tools to exploit parallelism in machines are strongly
linked to the platform used. As it was said above, two broad programming mod-
els stand out in this matter: distributed and shared memory models. For large
distributed memory systems, like clusters and grid computing, Message Passing
Interface (MPI) [22] is a de-facto programming standard. The key idea in MPI is
to decompose the computation over a collection of processes with private mem-

3

ory space. This processes can communicate with each other through message
passing, generally over a communication network.

With the recent growth of many-core architectures, the shared memory ap-
proach have increased its popularity. This model decomposes the computation in
multiple threads of execution sharing a common address space, communicating
with each other by reading and writing shared variables. Actually, this is the
model used by traditional programming tools like Fortran or C through libraries
like pthreads [1] or OpenMP [17].

The PGAS model tries to combine the advantages of the two approaches
mentioned so far. This model extends shared memory to a distributed memory
setting. The execution model allows having multiple processes (like MPI), multi-
ple threads in a process (like OpenMP), or a combination (see Figure 1). Ideally,
the user would be allowed to decide how tasks get mapped to physical resources.
X10 [21], Unified Parallel C [24] and Chapel [6] are examples of PGAS-enabled
languages, but there exist also PGAS-based IPC libraries such as GPI [15], for
use in traditional programming languages. For the experiments described herein,
we used the X10 language.

Fig. 1. PGAS Model

3.1 X10 in a Nutshell

X10 [21] is a general-purpose language developed by IBM, which provides a
PGAS variation: Asynchronous PGAS (APGAS). APGAS extends the PGAS
model making it flexible, even in non-HPC platforms [20]. Through this model
X10 can support different levels of concurrency with simple language constructs.

There are two main abstractions in X10 model: places and activities. A place
is the abstraction of a virtual shared-memory process, it has a coherent portion
of the address space together with threads (activities) that operate on that
memory. The X10 construct for creating a place in X10 is at, and is commonly
used to create a place for each processing unit in the platform. An activity is
the mechanism to abstract the single threads that perform computation within
a place. Multiple activities may be active simultaneously in a place.

4

With these two components of X10 implement the main concepts of the
PGAS model. Howevere, the language includes other interesting tools with the
goal of improving the abstraction level of the language. Synchronization is sup-
ported thanks to various operations such as finish, atomic and clock. The opera-
tion finish is used to wait the termination of a set of activities, it behaves like a
traditional barrier. The constructs atomic ensures an exclusive access to a criti-
cal portion of code. Finally, the construct clock is the standard way to ensure the
synchronization between activities or places. X10 supports the distributed array
construct, which makes it possible to divide an array into sub-arrays which are
mapped to available places. Doing this ensures a local access from each place to
the related assigned sub-array. A detailed examination of X10, including tutorial,
language specification and examples can be consulted at http://x10-lang.org.

4 X10 Adaptive Search Parallel Implementation

In order to get advantage of the parallelism it is necessary to identify the sources
of parallelism of the algorithm. In [5], the authors survey the state-of-the-art of
the main parallel meta-heuristic strategies and discuss general design and im-
plementation principles. This study raises a number of important issues in the
taxonomy of parallel sources that lies in meta-heuristics. They classify the de-
composition of activities for parallel work in two main groups: functional paral-
lelism and data parallelism.

On the one hand, in functional parallelism generally different tasks work in
parallel on the same data, allocated in different compute instances. On the other
hand, data parallelism refers to the methods in which the problem domain or the
associated search space is decomposed. A particular solution methodology is used
to address the problem on each of the resulting components of the search space.
Based on this study, we explored the parallelism in the Adaptive Search method
in both functional parallelism and data parallelism and this article mostly reports
on the latter, because this is where we expect the most significant gains to show.

4.1 Adaptive Search X10 sequential implementation

The first stage of the X10 implementation was to develop a sequential algorithm,
which is described as algorithm 1.

Figure 2 shows the class diagram of the basic X10 project. The class ASPer-
mutSolver contains the Adaptive Search permutation specialized method imple-
mentation. This class inherits the basic functionality from a general implemen-
tation of the Adaptive Search solver (in class AdaptiveSearchSolver), which in
turn inherits a very simple Local Search method implementation from the class
LocalSearchSolver. This class is then specialized for different parallel approaches,
which we experimented with.1

1 We experimented with two versions of Functional Parallism (FP1 and FP2) and a
Random Walk version (RW.)

5

Algorithm 1 Adaptive Search Base Algorithm

Input: problem given in CSP format:

– set of variables V = {X1, X2 · · ·} with their domains
– set of constraints Cj with error functions
– function to project constraint errors on vars (positive) cost function to minimize
– T : Tabu tenure (number of iterations a variable is frozen on local minima)
– RL: number of frozen variables triggering a reset
– MI: maximal number of iterations before restart
– MR: maximal number of restarts

Output: a solution if the CSP is satisfied or a quasi-solution of minimal cost otherwise.

1: Restart← 0
2: repeat

3: Restart← Restart+ 1
4: Iteration← 0
5: Compute a random assignment A of variables in V

6: Opt Sol← A

7: Opt Cost← cost(A)
8: repeat

9: Iteration← Iteration+ 1
10: Compute errors constraints in C and project on relevant variables
11: Select variable X with highest error: MaxV

12: ⊲ not marked Tabu
13: Select the move with best cost from X: MinConflictV

14: if no improvement move exists then
15: mark X as Tabu for T iterations
16: if number of variables marked Tabu ≥ RL then

17: randomly reset some variables in V

18: ⊲ and unmark those Tabu
19: end if

20: else

21: swap(MaxV ,MinConflictV),
22: ⊲ modifying the configuration A

23: if cost(A) < Opt Cost then

24: Opt Sol← A

25: Opt Cost← costs(A)
26: end if

27: end if

28: until Opt Cost = 0 (solution found) or Iteration ≥MI

29: until Opt Cost = 0 (solution found) or Restart ≥MR

30: output(Opt Sol, Opt Cost)

Moreover, a simple CSP model is described in the class CSPModel, and
specialized implementations of each CSP benchmark problem are contained in
the classes PartitModel, MagicSquareModel, AllIntervallModel and CostasModel,

6

which have all data structures and methods to implement the error function of
each problem.

Fig. 2. X10 Class Diagram basic project

Listing 1.1 shows a simplified skeleton code of our X10 sequential imple-
mentation, based on Algorithm 1. The core of the Adaptive Search algorithm
is implemented in the method solve. The solver method receives a CSPModel
instance as a parameter. In line 8, the CSP variables of the model are initialized
with a random permutation, in the next line the total cost of the current config-
uration is computed. The sentence while on line 10 begins the main loop of the
algorithm. The selectVarHighCost function (Line 12) selects the variable with
the maximum error and saves the result in maxI variable. The selectVarMin-
Conflict function (Line 13) selects the best neighbor move from the high cost
variable maxI, and saves the result index in minJ variable. Finally, if no local
minimum is detected, the algorithm swaps the variables maxI and minJ (per-
mutation problem) and recompute the total cost of the current configuration
(Line 16). The solver function ends if the totalCost variable reaches the 0 value
or if the algorithm reaches the maximum number of iterations.

Listing 1.1. Simplified AS X10 Sequential Implementation

1 class ASPermutSolver {
2 var t o ta lCos t : Int ;
3 var maxI : Int ;
4 var minJ : Int ;
5
6 public def s o l v e (csp : CSPModel) : Int {
7 // (. . . l o c a l v a r i a b l e s . . .)
8 csp . i n i t i a l i z e () ;
9 to ta lCos t = csp . co s tOfSo lu t i on () ;

10 while (t o ta lCos t != 0) {
11 // (. . . r e s t a r t code . . .)
12 maxI = se lectVarHighCost (csp) ;
13 minJ = se l e c tVarMinCon f l i c t (csp) ;

7

14 // (. . . l o c a l min tabu l i s t , r e s e t code . . .)
15 csp . swapVariables (maxI , minJ) ;
16 to ta lCos t = csp . co s tOfSo lu t i on () ;
17 }
18 return t o ta lCos t ;
19 }
20 }

4.2 Adaptive Search X10 Parallel Implementation

We first experimented with functional parallelism which consisted in executing
the inner loop in parallel, but the results were not expressive, mostly because of
thread handling overhead. We then implemented a data parallel variant, which
turns out natural because the sequential Adaptive Search algorithm can be used
as an isolated search instance. Furthermore, the search space is divided using
different random start points (i.e configurations). This strategy is called Ran-
dom Walks (RW) or Multi Search (MPSS, Multiple initial Points, Same search
Strategies) [5] and has proven to be very efficient [7, 14]. The main point of our
study is to explore the adequacy of a programming language based on a PGAS
model: we will discuss the strengths and weaknesses of this language when ap-
plied to Independent Random Walks, without any further tuning of the parallel
execution.

The implementation strategy is very different from the functional parallelism:
the key of this algorithm is to have several independent and isolated instances of
the Adaptive Search Solver applied to the problem model. Then it is necessary to
initialize the problem variables with a random assignment of values for the vari-
ables and to distribute it to the available processing resources in the computer
platform. Finally, when one instance reaches a solution, a termination detection
communication strategy is used to finalize the remaining running instances. This
simple parallel version has no inter-process communication, making it Embar-
rassingly or Pleasantly Parallel. The skeleton code of the algorithm is shown in
the Listing 1.2.

Listing 1.2. Adaptive Search data parallel X10 implementation

1 public class ASSolverRW{
2 val s o lD i s t : DistArray [ASPermutSolver] ;
3 val cspDis t : DistArray [CSPModel] ;
4 def this () {
5 s o lD i s t=DistArray .make [ASPermutSolver] (Dist . makeUnique ()) ;
6 cspDis t=DistArray .make [CSPModel] (Dist . makeUnique ()) ;
7 }
8 public def s o l v e () {
9 val random = new Random() ;

10 f in ish for (p in Place . p l a c e s ()) {
11 val seed = random . nextLong () ;
12 at (p) async {
13 cspDis t (here . id) = new CSPModel (seed) ;

8

14 s o lD i s t (here . id) = new ASPermutSolver (seed) ;
15 co s t = s o lD i s t (here . id) . s o l v e (cspDis t (here . id)) ;
16 i f (co s t==0){
17 for (k in Place . p l a c e s ())
18 i f (here . id != k . id)
19 at (k) async{
20 s o lD i s t (here . id) . k i l l = true ;
21 }
22 }
23 }
24 }
25 return co s t ;
26 }

For this implementation the ASSolverRW class was created. This class has
two global distributed arrays solDist and cspDist (lines 2 and 3). As explained
in Section 3.1, the DistArray class creates an array which is spread across mul-
tiple X10 places. In this case, an instance of ASPermutSolver and CSPModel
are spread over all the available places in the program. On line 10 a finish
operation is executed over a for loop that goes through all the places in the
program (Place.places()). Then, an activity is created in each place with the
sentence at(p) async on line 12. Into the async block, a new instance of the
solver (new ASPermutSolver(seed)) and the problem (new CSPModel(seed)) are
created (lines 13 and 14) and a random seed is passed. In line 15, the solving
process is executed and the returned cost is assigned to the cost variable. If this
cost is equal to 0, the solver in a place has reached a valid solution, it is then
necessary to send a termination signal to the remaining places (lines 16- 22). For
this, every place (i.e. every solver), checks the value of a kill variable at each
iteration. When it becomes equal to true the main loop of the solver is broken
and the activity is finished. To set a kill remote variable from any X10 place
it was necessary to create a new activity into each remaining place (sentence
at(k) async in line 19) and into the async block to change the value of the kill
variable. Line 18 with the sentence if (here.id != k.id) filters all the places that
not are the winner place (here). Finally, the function returns the solution of the
fastest place in line 25.

5 Benchmark description

In this study we used a set of benchmarks composed by four classical problems
in constraint programming: the magic square problem, the number partitioning
problem and the all-interval problem, all three taken from the CSPLib [10]; also
we include the Costas Array Problem (CAP) introduced in [12], which is a very
challenging real problem.

Magic Square Problem (MSP) The Magic Square Problem (prob019 in
CSPLib) consists of placing on a N ×N square all the numbers in {1, 2, . . . , N2}

9

such as the sum of the numbers in all rows, columns and the two diagonal are
the same. It can therefore be modeled in CSP by considering N2 variables with
initial domains {1, 2, . . . , N2} together with linear equation constraints and a
global all-different constraint stating that all variables should have a different
value. The constant value that should be the sum of all rows, columns and the
two diagonals can be easily computed to be N(N2 + 1)/2.

All-Interval Problem (AIP) The All-Interval Problem (prob007 in CSPLib)
consists of composing a sequence of N notes such that all are different and tonal
intervals between consecutive notes are also distinct. This problem is equivalent
to finding a permutation of the N first integers such that the absolute difference
between two consecutive pairs of numbers are all different. This amounts to
finding a permutation (X1, . . . , XN) of (0, . . . , N−1) such that the list (abs(X1−
X2), abs(X2 −X3), . . . , abs(XN−1 −XN)) is a permutation of (1, . . . , N − 1). A
possible solution forN = 8 is (3, 6, 0, 7, 2, 4, 5, 1) because all consecutive distances
are different.

Number Partitioning Problem (NPP) The Number Partitioning Problem
(prob049 in CSPLib) consists of finding a partition of numbers {1, . . . , N} into
two groups A and B of the same cardinality such that the sum of numbers in
A is equal to the sum of numbers in B and the sum of squares of numbers in
A is equal to the sum of squares of numbers in B. A solution for N = 8 is
A = {1, 4, 6, 7} and B = {2, 3, 5, 8}.

Costas Array Problem (CAP) The Costas Array Problem consists of filling
an N ×N grid with N marks such that there is exactly one mark per row and
per column and the N(N − 1)/2 vectors joining the marks are all different. It
is convenient to see the Costas Array Problem as a permutation problem by
considering an array of N variables (X1, . . . , Xn) which forms a permutation
of {1, 2, . . . , N} subject to some all-different constraints (see [8] for a detailed
modeling). This problem has many practical applications and currently it has a
whole community active working around it (http://www.costasarrays.org/).

6 Performance Analysis

This section presents and discusses our experimental results of the X10 imple-
mentation of the Adaptive Search algorithm.

We present the experimental results of the Adaptive Search algorithm in its
X10 data parallel implementation. We do not present results for functional par-
allelism because the tests we carried out show that the granularity of individual
threads is too fine to yield any performance improvement.

The testing environment used in each running was a non-uniform memory
access (NUMA) computer, with 2 Intel Xeon W5580 CPUs each one with 4

10

hyper-threaded cores running at 3.2GHz. This system has 12 GB of main mem-
ory.

At the software level, the X10 runtime system can be deployed in two different
backends: Java backend and C++ backend; they differ in the native language used
to implement the X10 program (Java or C++), also they present different trade-
offs on different machines. Currently, the C++ backend seems relatively mature
and faster, therefore, we have chosen it for this experimentation.

Regarding the stochastic nature of the Adaptive Search behavior, several
executions of the same problem were done and the times averaged. We ran 100
samples for each experimental case in the benchmark.

In this presentation, all tables use the same format: the first column identifies
the problem instance, the second column is the execution time of the problem
in the sequential implementation, the next group of columns contains the corre-
sponding speed-up obtained with a varying number of cores (activities or places),
and the last column presents the execution time of the problem with the highest
number of cores.

Magic Square Problem. Table 1 presents the data obtained solving several
large instances of MSP. Both raw times (average of 100 runs) and relative speed-
ups are reported. The results show quasi-linear speed-ups (which seem indepen-
dent of the size of the problem).

Problem time (s) speed-up with k places time (s)
instance seq. 2 4 6 8 8 places

40 0.47 2.12 3.20 4.14 4.42 0.11
60 1.59 1.58 2.68 3.25 3.62 0.44
80 5.10 1.84 2.92 3.72 4.19 1.22
100 11.88 1.69 2.92 3.64 4.36 2.72

Table 1. Magic Square: data parallel (timings and speed-ups)

All-Interval Problem. Table 2 shows the average time of several instances of
AIP together with the speed-ups acquired with different number of places. Here
again the speed-ups are practically linear up to 5.38 with 8 places. Moreover, in
this case the speed-up tends to increase with the size of the problem.

Number Partitioning Problem. Table 3 shows the results of NPP. From this
data, it can be seen that the corresponding speed-up obtained is almost the ideal
speed-up for each number of places used. Also, the speed-up increases linearly
with the number of cores to reach a maximum of 7.64 with 8 places. Moreover,
this speed-up seems to increase with the size of the problem.

11

Problem time (s) speed-up with k places time (s)
instance seq. 2 4 6 8 8 places

50 0.027 2.25 3.24 4.46 4.94 0.005
100 0.47 2.12 3.21 4.32 4.96 0.09
150 2.36 1.74 3.47 4.65 5.15 0.46
200 8.29 1.84 3.66 5.28 5.38 1.54

Table 2. All-interval: data parallel (timings and speed-ups)

Problem time (s) speed-up with k places time (s)
instance seq. 2 4 6 8 8 places

1400 1.07 1.50 2.60 4.49 5.00 0.21
1600 1.94 1.78 3.59 5.10 6.97 0.28
1800 2.30 1.62 3.48 3.98 5.49 0.42
2000 4.31 2.34 4.87 7.06 7.64 0.56

Table 3. Partition: data parallel (timings and speed-ups)

Costas Array Problem. Table 4 presents the average time for several instances
of the Costas Array Problem together with the speed-up obtained when using
different numbers of places. The data confirm the trends above observed. Note
that the best speed-up (9.56) is super-linear and is obtained for the most difficult
instance of CAP (size of 19): the execution time is drastically reduced from 103.98
seconds to only 10.87 seconds on 8 places.

Problem time (s) speed-up with k places time (s)
instance seq. 2 4 6 8 8 places

16 0.26 1.79 3.52 4.00 7.09 0.04
17 1.94 1.96 4.46 6.47 9.84 0.19
18 10.90 1.68 4.05 5.09 6.88 1.59
19 103.98 2.13 4.63 5.81 9.56 10.87

Table 4. Costas Array: data parallel (timings and speed-ups)

Figure 3 shows the speed-ups reached on the most difficult instance of each
problem. It can be seen that the speed-up increases almost linearly with the
number of places used in the X10 program.

The performance evaluation developed in this work shows that a parallel
Local Search solver implemented in X10 has good performance2 using a data
parallel strategy. The study has identified constant behavior of the speed-up with
relation to the size of the problem (for some problems the speed-up improves

2 Within a bound of 4-5 w.r.t. our sequential C implementation.

12

Fig. 3. Speed-ups for the most difficult instance of each problem

with the size of the problem). The resulting average runtime and the speed-ups
obtained in the entire experimental test performed are as good as reported in
the literature when using other IPC frameworks such as MPI [7, 8, 2] and seems
to lie within the predictable bounds proposed by [23].

7 Conclusion and Future Work

We presented a parallel X10 implementation of an effective Local Search algo-
rithm, Adaptive Search. We first experimented with functional parallelism, i.e.
trying to divide the inner loop of the algorithm into various concurrent tasks. As
expected, this yielded no speed-up, mainly because of the bookkeeping overhead
(creation, scheduling and synchronization) that are too fine-grained.

We then proceeded with a data parallel implementation, in which the search
space is decomposed in possible different random initial configurations of the
problem and getting isolated solver instances to work on each point concurrently.
We got a good level of performance for the X10 data-parallel implementation,
reaching a maximum speed-up of 9.84 with 8 places for the Costas Array Prob-
lem. Linear (or close) speed-ups have been recorded in all problems we studied
and they remain constant (or increasing) wrt the size of the problem.

X10 has proved a suitable platform to exploit parallelism in different ways for
constraint-based local search solvers, ranging from single shared memory inter-
process parallelism to more external distributed memory programming model.
Additionally, the use of the X10 implicit communication mechanisms shows that
X10 enables one to abstract the complexity of the parallelism with a very simple

13

model, e.g. the distributed arrays and the termination detection system in our
data parallel implementation.

Future work will focus on the implementation of a cooperative Local Search
parallel solver using data parallelism. The key idea is to take advantage of all
communications tools available in this APGAS model, to exchange information
between different solver instances in order to obtain a more efficient and scal-
able solver implementation. We also plan to test the behavior of a cooperative
implementation, under different HPC architectures, such as the many-core Xeon
PHI, GPGPU accelerators and grid computing platforms like Grid5000.

References

1. David Butenhof. Programming With Posix Threads. Addison-Wesley Professional,
1997.

2. Yves Caniou, Philippe Codognet, Daniel Diaz, and Salvador Abreu. Experiments
in parallel constraint-based local search. In Peter Merz and Jin-Kao Hao, editors,
Evolutionary Computation in Combinatorial Optimization - 11th European Con-
ference, EvoCOP 2011, Torino, Italy, April 27-29, 2011. Proceedings, volume 6622
of Lecture Notes in Computer Science, pages 96–107. Springer, 2011.

3. Philippe Codognet and Daniel Diaz. Yet another local search method for constraint
solving. In Kathleen Steinhöfel, editor, Stochastic Algorithms: Foundations and
Applications, pages 342–344. Springer Berlin Heidelberg, London, 2001.

4. Philippe Codognet and Daniel Diaz. An Efficient Library for Solving CSP with
Local Search. In 5th international Conference on Metaheuristics, pages 1–6, Kyoto,
Japan, 2003.

5. Teodor Gabriel Crainic and Michel Toulouse. Parallel Meta-Heuristics. In Michel
Gendreau and Jean-Yves Potvin, editors, Handbook of Metaheuristics, number
May, pages 497–541. Springer US, 2010.

6. Cray Inc. Chapel Language Specification Version 0.91. 2012.
7. Daniel Diaz, Salvador Abreu, and Philippe Codognet. Targeting the Cell Broad-

band Engine for constraint-based local search. Concurrency and Computation:
Practice and Experience (CCP&E), 24(6):647–660, 2011.

8. Daniel Diaz, Florian Richoux, Yves Caniou, Philippe Codognet, and Salvador
Abreu. Parallel local search for the costas array problem. In PCO’12,Parallel
Computing and Optimization, Shanghai, China, 2012. IEEE.

9. Tarek El-Ghazawi, William Carlson, Thomas Sterling, and Katherine Yelick. Wi-
ley: UPC: Distributed Shared Memory Programming - Tarek El-. Wiley, 2005.

10. I.P. Gent and T. Walsh. ”CSPLib: a benchmark library for constraints. Technical
report, 1999.

11. Fred Glover and Manuel Laguna. Tabu Search. Kluwer Academic Publishers, July
1997.

12. Serdar Kadioglu and Meinolf Sellmann. Dialectic Search. In Principles and Practice
of Constraint Programming (CP), volume 5732, pages 486–500, 2009.

13. Khronos OpenCL Working Group. OpenCL Specification. 2008.
14. Rui Machado, Salvador Abreu, and Daniel Diaz. Parallel Local Search : Experi-

ments with a PGAS-based programming model. In 12th International Colloquium
on Implementation of Constraint and Logic Programming Systems, pages 1–17,
Budapest, Hungary, 2012.

14

15. Rui Machado and Carsten Lojewski. The Fraunhofer virtual machine: a communi-
cation library and runtime system based on the RDMA model. Computer Science
- R&D, 23(3-4):125–132, 2009.

16. NVIDIA. CUDA C Programming Guide, 2013.
17. OpenMP. The OpenMP API specification for parallel programming.
18. Francesca Rossi, Peter Van Beek, and Toby Walsh, editors. Handbook of Constraint

Programming, volume 2 of Foundations of Artificial Intelligence. Elsevier Science,
2006.

19. Camille Salinesi, Raul Mazo, Olfa Djebbi, Daniel Diaz, and Alberto Lora-michiels.
Constraints : the Core of Product Line Engineering. In Conference on Research
Challenges in Information Science (RCIS), number ii, pages 1–10, Guadeloupe,
French West Indies, France, 2011.

20. Vijay Saraswat, George Almasi, Ganesh Bikshandi, Calin Cascaval, David Cun-
ningham, David Grove, Sreedhar Kodali, Igor Peshansky, and Olivier Tardieu. The
Asynchronous Partitioned Global Address Space Model. In The First Workshop
on Advances in Message Passing, pages 1–8, Toronto, Canada, 2010.

21. Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and David Grove.
X10 language specification - Version 2.3. Technical report, 2012.

22. Mark Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra.
MPI : The Complete Reference. The MIT Press, 1996.

23. Charlotte Truchet, Florian Richoux, and Philippe Codognet. Prediction of parallel
speed-ups for las vegas algorithms. CoRR, abs/1212.4287, 2012.

24. UPC Consortium, editor. UPC Language Specifications. 2005.

15

