
HAL Id: hal-00874633
https://paris1.hal.science/hal-00874633v1

Submitted on 18 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Parallel Constraint-Based Local Search with
the X10 Language

Danny Munera, Daniel Diaz, Salvador Abreu

To cite this version:
Danny Munera, Daniel Diaz, Salvador Abreu. Towards Parallel Constraint-Based Local Search with
the X10 Language. 20th International Conference on Applications of Declarative Programming and
Knowledge Management (INAP 2013), Sep 2013, Kiel, Germany. pp.168-182. �hal-00874633�

https://paris1.hal.science/hal-00874633v1
https://hal.archives-ouvertes.fr

Towards Parallel Constraint-Based Local Search
with the X10 Language

Danny Munera1, Daniel Diaz1, and Salvador Abreu2

1 University of Paris 1-Sorbonne, France
Danny.Munera@malix.univ-paris1.fr, Daniel.Diaz@univ-paris1.fr

2 Universidade de Évora and CENTRIA, Portugal
spa@di.uevora.pt

Abstract. In this study, we started to investigate how the Partitioned
Global Address Space (PGAS) programming language X10 would suit
the implementation of a Constraint-Based Local Search solver. We wanted
to code in this language because we expect to gain from its ease of use
and independence from specific parallel architectures. We present the im-
plementation strategy, and search for different sources of parallelism. We
discuss the algorithms, their implementations and present a performance
evaluation on a representative set of benchmarks.

1 Introduction

Constraint Programming has been successfully used to model and solve many
real-life problems in diverse areas such as planning, resource allocation, schedul-
ing and product line modeling [16, 17]. Classically constraint satisfaction prob-
lems (CSPs) may be solved exhaustively by complete methods which are able
to find all solutions, and therefore determine whether any solutions exist. How-
ever efficient these solvers may be, a significant class of problems remains out of
reach because of exponential growth of search space, which must be exhaustively
explored. Another approach to solving CSPs entails giving up completeness and
resorting to (meta-) heuristics which will guide the process of searching for so-
lutions to the problem. Solvers in this class make choices which limit the search
space which actually gets visited, enough so to make problems tractable. For in-
stance a complete solver for the magic squares benchmark will fail for problems
larger than 15× 15 whereas a local search method will easily solve a 100× 100
problem instance within the lower resource bounds. On the other hand, a local
search procedure may not be able to find a solution, even when one exists.

However, it is unquestionable that the more computational resources are
available, the more complex the problems that may be solved. We would therefore
like to be able to tap into the forms of augmented computational power which
are actually available, as conveniently as feasible. This requires taming various
forms of explicitly parallel architectures.

Present-day parallel computational resources include increasingly multi-core
processors, General Purpose Graphic Processing Units (GPGPUs), computer
clusters and grid computing platforms. Each of these forms requires a different

programming model and the use of specific software tools, the combination of
which makes software development even more difficult.

The foremost software platforms used for parallel programming include POSIX
Threads [1] and OpenMP [15] for shared-memory multiprocessors and multicore
CPUs, MPI [20] for distributed-memory clusters or CUDA [14] and OpenCL [10]
for massively parallel architectures such as GPGPUs. This diversity is a chal-
lenge from the programming language design standpoint, and a few proposals
have emerged that try to simultaneously address the multiplicity of parallel com-
putational architectures.

Several modern language designs are built around the Partitioned Global
Address Space (PGAS) memory model, as is the case with X10 [19], Unified
Parallel C [7] or Chapel [5]. Many of these languages propose abstractions which
capture the several forms in which multiprocessors can be organized. Other, less
radical, approaches consist in supplying a library of inter-process communication
which relies on and uses a PGAS model.

In our quest to find a scalable and architecture-independent implementation
platform for our exploration of high-performance parallel constraint-based local
search methods, we decided to experiment with one of the most promising new-
generation languages, X10 [19].

The remainder of this article is organized as follows: Section 2 discusses the
PGAS Model and briefly introduces the X10 programming language. Section 3
introduces native X10 implementations exploiting different sources of parallelism
of the Adaptive Search algorithm. Section 4 presents an evaluation of these
implementations. A short conclusion ends the paper.

2 X10 and the Partitioned Global Address Space (PGAS)
model

The current arrangement of tools to exploit parallelism in machines are strongly
linked to the platform used. As it was said above, two broad programming mod-
els stand out in this matter: distributed and shared memory models. For large
distributed memory systems, like clusters and grid computing, Message Passing
Interface (MPI) [20] is a de-facto programming standard. The key idea in MPI is
to decompose the computation over a collection of processes with private mem-
ory space. These processes can communicate with each other through message
passing, generally over a communication network.

With the recent growth of many-core architectures, the shared memory ap-
proach has increased its popularity. This model decomposes the computation in
multiple threads of execution sharing a common address space, communicating
with each other by reading and writing shared variables. Actually, this is the
model used by traditional programming tools like Fortran or C through libraries
like pthreads [1] or OpenMP [15].

The PGAS model tries to combine the advantages of the two approaches
mentioned so far. This model extends shared memory to a distributed memory
setting. The execution model allows having multiple processes (like MPI), multi-
ple threads in a process (like OpenMP), or a combination (see Figure 1). Ideally,

2

the user would be allowed to decide how tasks get mapped to physical resources.
X10 [19], Unified Parallel C [22] and Chapel [5] are examples of PGAS-enabled
languages, but there exist also PGAS-based IPC libraries such as GPI [12], for
use in traditional programming languages. For the experiments described herein,
we used the X10 language.

Fig. 1. PGAS Model

X10 [19] is a general-purpose language developed by IBM, which provides a
PGAS variation: Asynchronous PGAS (APGAS). APGAS extends the PGAS
model making it flexible, even in non-HPC platforms [18]. Through this model
X10 can support different levels of concurrency with simple language constructs.

There are two main abstractions in the X10 model: places and activities. A
place is the abstraction of a virtual shared-memory process, it has a coherent
portion of the address space together with threads (activities) that operate on
that memory. The X10 construct for creating a place in X10 is at, and is com-
monly used to create a place for each processing unit in the platform. An activity
is the mechanism to abstract the single threads that perform computation within
a place. Multiple activities may be active simultaneously in a place.

X10 implements the major components of the PGAS model, by the use of
places and activities. However, the language includes other interesting tools with
the goal of improving the abstraction level of the language. Synchronization is
supported thanks to various operations such as finish, atomic and clock. The
operation finish is used to wait for the termination of a set of activities, it
behaves like a traditional barrier. The constructs atomic ensures an exclusive
access to a critical portion of code. Finally, the construct clock is the standard
way to ensure the synchronization between activities or places. X10 supports the
distributed array construct, which makes it possible to divide an array into sub-
arrays which are mapped to available places. Doing this ensures a local access
from each place to the related assigned sub-array. A detailed examination of
X10, including tutorial, language specification and examples can be consulted
at http://x10-lang.org/.

3

3 Native X10 Implementations of Adaptive Search

In order to take advantage of the parallelism it is necessary to identify the
sources of parallelism of the Adaptive Search algorithm. In [4], the authors survey
the state-of-the-art of the main parallel meta-heuristic strategies and discuss
general design and implementation principles. They classify the decomposition
of activities for parallel work in two main groups: functional parallelism and data
parallelism (also known as OR-parallelism and AND-parallelism in the Logic
Programming community).

On the one hand, in functional parallelism different tasks run on multiple
compute instances across the same or different datasets. On the other hand, data
parallelism refers to the methods in which the problem domain or the associated
search space is decomposed. A particular solution methodology is used to address
the problem on each of the resulting components of the search space. This article
reports on our experiments concerning both kinds of parallelism applied to the
Adaptive Search method.

3.1 Sequential Implementation

Our first experiment with AS in X10 was to develop a sequential implementation
corresponding to a specialized version of the Adaptive Search for permutation
problems [13]3.

Figure 2 shows the class diagram of the basic X10 project. The class ASPer-
mutSolver contains the Adaptive Search permutation specialized method imple-
mentation. This class inherits the basic functionality from a general implemen-
tation of the Adaptive Search solver (in class AdaptiveSearchSolver), which in
turn inherits a very simple Local Search method implementation from the class
LocalSearchSolver. This class is then specialized for different parallel approaches,
which we experimented with. As we will see below, we experimented with two
versions of Functional Parallelism (FP1 and FP2) and a Data Parallelism version
(called Random Walk, i.e. RW).

Moreover, a simple CSP model is described in the class CSPModel, and
specialized implementations of each CSP benchmark problem are contained in
the classes PartitModel, MagicSquareModel, AllIntervallModel and CostasModel,
which have all data structures and methods to implement the error function of
each problem.

Listing 1.1 shows a simplified skeleton code of our X10 sequential imple-
mentation, based on Algorithm 1. The core of the Adaptive Search algorithm
is implemented in the method solve. The solve method receives a CSPModel
instance as parameter. On line 8, the CSP variables of the model are initial-
ized with a random permutation. On the next line the total cost of the current
configuration is computed. The while instruction on line 10 corresponds to the
main loop of the algorithm. The selectVarHighCost function (Line 12) selects the

3 In a permutation problem, all N variables have the same initial domain of size N

and are subject to an implicit all-different constraint. The associated algorithm is
reported in the appendix.

4

Fig. 2. X10 Class Diagram basic project

variable with the maximal error and saves the result in the maxI variable. The
selectVarMinConflict function (Line 13) selects the best neighbor move from the
highest cost variable maxI, and saves the result in the minJ variable. Finally,
if no local minimum is detected, the algorithm swaps the variables maxI and
minJ (permutation problem) and computes the total cost of the resulting new
configuration (Line 16). The solver function ends if the totalCost variable equals
0 or when the maximum number of iterations is reached.

Listing 1.1. Simplified AS X10 Sequential Implementation

1 class ASPermutSolver {
2 var totalCost: Int;
3 var maxI: Int;
4 var minJ: Int;
5
6 public def solve (csp: CSPModel): Int {
7 . . . local variables . . .
8 csp.initialize();
9 totalCost = csp.costOfSolution();

10 while (totalCost != 0) {
11 . . . restart code . . .
12 maxI = selectVarHighCost (csp);
13 minJ = selectVarMinConflict (csp);
14 . . . local min tabu list, reset code . . .
15 csp.swapVariables (maxI, minJ);
16 totalCost = csp.costOfSolution ();
17 }
18 return totalCost;
19 }
20 }

3.2 Functional Parallel Implementation

Functional parallelism is our first attempt to parallelize the Adaptive Search
algorithm. The key aim for this implementation is to decompose the problem

5

into different tasks, each task working in parallel on the same data. To achieve
this objective it is necessary to change the inner loop of the sequential Adaptive
Search algorithm.

In this experiment, we decided to change the structure of the selectVarHigh-
Cost function, because therein lies the most costly activities performed in the
inner loop. The most important task performed by this function is to go through
the variable array of the CSP model to compute the cost of each variable (in or-
der to select the variable with the highest cost). A X10 skeleton implementation
of selectVarHighCost function is presented in Listing 1.2.

Listing 1.2. Function selVarHighCost in X10

1 public def selectVarHighCost(csp : CSPModel) : Int {
2 . . . local variables . . .
3 // main loop: go through each variable in the CSP
4 for (i = 0; i < size; i++) {
5 . . . count marked variables . . .
6 cost = csp.costOnVariable (i);
7 . . . select the highest cost . . .
8 }
9 return maxI; // (index of the highest cost)

10 }

Since this function must process the entire variable vector at each iteration,
it is then natural to try to parallelize this task. For problems with many variables
(e.g. the magic square problem involves N2 variables) the gain could be very in-
teresting. We developed a first approach (called FP1), in which n single activities
are created at each iteration. Each activity processes a portion of the variables
array and performs the required computations. The X10 construct async was
chosen to create individual activities sharing the global array. Listing 1.3 shows
the X10 skeleton code for the first approach of the functional parallelism in the
function selectVarHighCost.

Listing 1.3. First approach to functional parallelism

1 public def selectVarHighCost (csp : CSPModel) : Int {
2 // Initialization of Global variables
3 var partition : Int = csp.size/THNUM;
4 finish for(th in 1..THNUM){
5 async{
6 for (i = ((th−1)∗partition); i < th∗partition; i++){
7 . . . calculate individual cost of each variable . . .
8 . . . save variable with higher cost . . .
9 }

10 }
11 }
12 . . . terminate function: merge solutions . . .
13 return maxI; //(Index of the higher cost)
14 }

In this implementation the constant THNUM on line 4 represents the number
of concurrent activities that are deployed by the program. On the same line,

6

the keyword finish ensures the termination of all spawned activities. Finally, the
construct async on line 5 spawns independent individual tasks to cross over a
portion of the variable array (sentence for on line 6). With this strategy we face
up with a well known problem of functional parallelism: the overhead due to the
management of fine-grained activities. As expected results are not good enough
(see Section 4 for detailed results).

In order to limit the overhead due to activity creation, we implemented a
second approach (called FP2). Here the n working activities are created at the
very beginning of the solving process, just before the main loop of the algorithm.
These activities are thus available for all subsequent iterations. However, it is
necessary to develop a synchronization mechanism to assign tasks to the working
activities and to wait for their termination. For this purpose we created two new
classes: ComputePlace and ActivityBarrier. ComputePlace is a compute instance,
which contains the functionality of the working activities. ActivityBarrier is a
very simple barrier developed with X10 monitors (X10 concurrent package).

Listing 1.4 shows the X10 implementation of the second approach.

Listing 1.4. Second approach to functional parallelism

1 public class ASSolverFP1 extends ASPermutSolver{
2 val computeInst : Array[ComputePlace];
3 var startBarrier : ActivityBarrier;
4 var doneBarrier : ActivityBarrier;
5
6 public def solve(csp : CSPModel):Int{
7 for(var th : Int = 1; th <= THNUM ; th++)

8 computeInst(th)4 = new ComputePlace(th , csp);
9

10 for(id in computeInst)
11 async computeInst(id).run();
12
13 while(total cost!=0){
14 . . . restart code . . .
15 for(id in computeInst)
16 computeInst(id).activityToDo = SELECVARHIGHCOST;
17
18 startBarrier.wait(); // send start signal
19 // activities working...
20 doneBarrier.wait(); // work ready
21 maxI=terminateSelVarHighCost();
22 . . . local min tabu list, reset code . . .
23 }
24 // Finish activities
25 for(id in computeInst)
26 computeInst(id).activityToDo = FINISH;
27
28 startBarrier.wait();
29 doneBarrier.wait();

4 Remark: in X10 the array notation is table(index) instead of table[index] as in C.

7

30 return totalCost;
31 }
32 }

This code begins with the definition of three global variables on lines 2-
4: computeInst, startBarrier and doneBarrier ; computeInst is an array of Com-
putePlace objects, one for each working activity desired. startBarrier and doneBar-
rier are ActivityBarrier instances created to signalize the starting and ending of
the task in the compute place. On lines 7-11, before the main loop THNUM work-
ing activities are created and started over an independent X10 activity. When
the algorithm needs to execute the selectVarHighCost functionality, the main
activity assigns this task putting a specific value into the variable activityToDo
in the corresponding instance of the ComputePlace class (lines 15 and 16), then
the function wait() is executed over the barrier startBarrier to notify all work-
ing activities to start (line 18). Finally, the function wait() is executed over the
barrier doneBarrier to wait the termination of the working activities (line 20).
Then on line 21 the main activity can process the data with the function ter-
minateSelVarHighCost. When the main loop ends, all the working activities are
notified to end and the solve function returns (lines 25-30). Unfortunately, as we
will see below, the improvement of this second approach is not important enough
(and, in addition, it has its own overhead due to synchronization mechanisms).

3.3 Data Parallel Implementation

A straightforward implementation of data parallelism in the Adaptive Search al-
gorithm is the multiple independent Random Walks (IRW) approach. The idea
is to use isolated sequential Adaptive Search solver instances dividing the search
space of the problem through different random starting points. This strategy is
also known as Multi Search (MPSS, Multiple initial Points, Same search Strate-
gies) [4] and has proven to be very efficient [6, 11].

The key of this implementation is to have several independent and isolated
instances of the Adaptive Search Solver applied to the same problem model.
The problem is distributed to the available processing resources in the computer
platform. Each solver runs independently (starting with a random assignment
of values). When one instance finds a solution it is necessary to stop all other
running instances. This is achieved using a termination detection communication
strategy. This simple parallel version has no inter-process communication, mak-
ing it Embarrassingly or Pleasantly Parallel. The skeleton code of the algorithm
is shown in the Listing 1.5.

Listing 1.5. Adaptive Search data parallel X10 implementation

1 public class ASSolverRW{
2 val solDist : DistArray[ASPermutSolver];
3 val cspDist : DistArray[CSPModel];
4 def this(){
5 solDist=DistArray.make[ASPermutSolver](Dist.makeUnique());
6 cspDist=DistArray.make[CSPModel](Dist.makeUnique());

8

7 }
8 public def solve(){
9 val random = new Random();

10 finish for(p in Place.places()){
11 val seed = random.nextLong();
12 at(p) async {
13 cspDist(here.id) = new CSPModel(seed);
14 solDist(here.id) = new ASPermutSolver(seed);
15 cost = solDist(here.id).solve(cspDist(here.id));
16 if (cost==0){
17 for (k in Place.places())
18 if (here.id != k.id)
19 at(k) async{
20 solDist(here.id).kill = true;
21 }
22 }
23 }
24 }
25 return cost;
26 }
27 }

For this implementation the ASSolverRW class was created. The algorithm
has two global distributed arrays: solDist and cspDist (lines 2 and 3). As ex-
plained in Section 2, the DistArray class creates an array which is spread across
multiple X10 places. In this case, an instance of ASPermutSolver and CSPModel
are stored at each available place in the program. On lines 5 and 6 function make
creates and initializes the ditributed vector in the region created by the function
Dist.makeUnique() (makeUnique function creates a distribution over a region
that maps every point in the region to a distinct place, and which maps some
point in the region to every place). On line 10 a finish operation is executed over
a for loop that goes through all the places in the program (Place.places()). Then,
an activity is created in each place with the sentence at(p) async on line 12. Into
the async block, a new instance of the solver (new ASPermutSolver(seed)) and
the problem (new CSPModel(seed)) are created (lines 13 and 14) and a random
seed is passed. On line 15, the solving process is executed and the returned cost
is assigned to the cost variable. If this cost is equal to 0, the solver in a place has
reached a valid solution, it is then necessary to send a termination signal to the
remaining places (lines 16- 22). For this, every place (i.e. every solver), checks
the value of a kill variable at each iteration. When it becomes equal to true the
main loop of the solver is broken and the activity is finished. To set a kill re-
mote variable from any X10 place it was necessary to create a new activity into
each remaining place (sentence at(k) async on line 19) and into the async block
to change the value of the kill variable. On line 18, the sentence if (here.id !=
k.id) filters all places which are not the winning one (here). Finally, the function
returns the solution of the fastest place on line 25.

9

4 Performance Analysis

In this section, we present and discuss our experimental results of our X10 im-
plementations of the Adaptive Search algorithm. The testing environment used
was a non-uniform memory access (NUMA) computer, with 2 Intel Xeon W5580
CPUs each one with 4 hyper-threaded cores running at 3.2GHz as well as a sys-
tem based on 4 16-core AMD Opteron 6272 CPUs running at 2.1GHz.

We used a set of benchmarks composed of four classical problems in con-
straint programming: the magic square problem (MSP), the number partition-
ing problem (NPP) and the all-interval problem (AIP), all three taken from the
CSPLib [8]; also we include the Costas Arrays Problem (CAP) introduced in [9],
which is a very challenging real problem. The problems were all tested on sig-
nificantly large instances. The interested reader may find more information on
these benchmarks in [13].

It is worth noting, at the software level, that the X10 runtime system can be
deployed in two different backends: Java backend and C++ backend; they differ
in the native language used to implement the X10 program (Java or C++), also
they present different trade-offs on different machines. Currently, the C++ back-
end seems relatively more mature and faster for scientific computation. There-
fore, we have chosen it for this experimentation.

Regarding the stochastic nature of the Adaptive Search behavior, several
executions of the same problem were done and the times averaged. We ran 100
samples for each experimental case in the benchmark.

In this presentation, all tables report raw times in seconds (average of 100
runs) and relative speed-ups. These tables respect the same format: the first
column identifies the problem instance, the second column is the execution time
of the problem in the sequential implementation, the next group of columns
contains the corresponding speed-up obtained with a varying number of cores
(places), and the last column presents the execution time of the problem with
the highest number of places.

4.1 Sequential Performance

Even if our first goal in using X10 is parallelism, it is interesting to compare the
sequential X10 implementation with a reference implementation: our low-level
and highly optimized C version initially used in [2, 3] and continuously improved
since then. The X10 implementation appears to be 3 to 5 times slower than the
C version: this is not a prohibitive price to pay, if one takes into account the
possibilities promised by X10 for future experimentation.

A possible explanation of the difference between the performances of both
implementations is probably the richness of the X10 language (OOP, architecture
abstractions, communication abstractions, etc.). Also, maybe it is necessary to
improve our X10 language skills good enough to get the best performance of this
tool.

10

4.2 Functional Parallel Performance

Table 1 shows the results of the first version of the functional parallelism X10
implementation. Only two benchmarks (2 instances of MSP and CAP) are pre-
sented. Indeed, we did not investigate this approach any further since the results
are clearly not good. Each problem instance was executed with a variable number
of activities (THNUM = 2, 4 and 8). It is worth noting, that the environmental
X10 variable X10 NTHREADS was passed to the program with an appropriate
value to each execution. This variable controls the number of initial working
threads per place in the X10 runtime system.

Problem time (s) speed-up with k places time (s)
instance seq. 2 4 8 8 places

MSP-100 11.98 0.86 0.95 0.77 15.49
MSP-120 24.17 1.04 0.97 0.98 24.65

CAP-17 1.56 0.43 0.28 0.24 6.53
CAP-18 12.84 0.51 0.45 0.22 57.16

Table 1. Functional Parallelism – first approach (timings and speed-ups)

As seen in Table 1, for all the treated cases the obtained speed-up is less
than 1 (i.e. a slowdown factor), showing a deterioration of the execution time
due to this parallel implementation. So, it is possible to conclude that no gain
time is obtainable in this approach. To analyze this behavior it is important
to return to the description of the Listing 1.3. As already noted, the parallel
function selVarHighCost in this implementation are located into the main loop
of the algorithm, so THNUM activities are created, scheduled and synchronized
at each iteration in the program execution, being a very important source of
overhead. The results we obtained suggest that this overhead is larger than the
improvement obtained by the implementation of this parallel strategy.

Turning to the second approach, Table 2 shows the results obtained with this
strategy. Equally, the number of activities spawn, in this case at the beginning,
was varied from 2 to 8.

Problem time (s) speed-up with k places time (s)
instance seq. 2 4 8 8 places

MSP-100 11.98 1.15 0.80 0.86 13.87
MSP-120 24.17 1.23 0.94 0.63 38.34

CAP-17 1.56 0.56 0.30 0.25 6.35
CAP-18 12.84 0.74 0.39 0.27 46.84

Table 2. Functional Parallelism – second approach (timings and speed-ups)

11

Even if the results are slightly better, there is no noticeable speed-up. This
is due to a new form of overhead due to the synchronization mechanism which
is used in the inner loop of the algorithm to assign tasks and to wait for their
termination (see Listing 1.4).

4.3 Data Parallel Performance

Table 3 and Figure 3 document the speedups we obtained when resorting to
data parallelism. Observe that, for this particular set of runs, we used a different
hardware platform, with more cores than for the other runs.

Problem time (s) speed-up with k places time (s)
instance seq. 8 16 24 32 32 places

AIP-300 56.7 4.7 7.1 9.9 10.0 5.6
NPP-2300 6.6 6.1 9.8 10.5 12.0 0.5
MSP-200 365 8.3 12.2 13.6 14.6 24.9
CAP-20 731 5.6 12.0 16.1 20.5 35.7

Table 3. Data Parallelism (timings and speed-ups)

Fig. 3. Speed-ups for the most difficult instance of each problem

The performance of data parallel version is clearly above the performance
of the functional parallel version. The resulting average runtime and the speed-
ups obtained in the entire experimental test performed seems to lie within the

12

predictable bounds proposed by [21]. The Costas Arrays Problem displays re-
markable performance with this strategy, e.g. the CAP reaches a speed-up of
20.5 with 32 places. It can be seen that the speed-up increases almost linearly
with the number of used places. However, for other problems (e.g. MSP), the
curve clearly tends to flat when the number of places increases.

5 Conclusion and Future Work

We presented different parallel X10 implementations of an effective Local Search
algorithm, Adaptive Search in order to exploit various sources of parallelism. We
first experimented two functional parallelism versions, i.e. trying to divide the
inner loop of the algorithm into various concurrent tasks. This turns out to yield
no speed-up at all, most likely because of the bookkeeping overhead (creation,
scheduling and synchronization) that is incompatible with such a fine-grained
level of parallelism.

We then proceeded with a data parallel implementation, in which the search
space is decomposed into possible different random initial configurations of the
problem and getting isolated solver instances to work on each point concurrently.
We got a good level of performance for the X10 data-parallel implementation
with monotonously increasing speed-ups in all problems we studied, although
they taper off after some point.

The main result we draw from this experiment, is that X10 has proved a
suitable platform to exploit parallelism in different ways for constraint-based lo-
cal search solvers. These entail experimenting with different forms of parallelism,
ranging from single shared memory inter-process communication to a distributed
memory programming model. Additionally, the use of the X10 implicit commu-
nication mechanisms allowed us to abstract away from the complexity of the
parallel architecture with a very simple and consistent device: the distributed
arrays and the termination detection system in our data parallel implementa-
tion.

Considering that straightforward forms of parallelism seem to get lower gains
as we increase the number of cores, we want to look for ways of improving on
this situation. Future work will focus on the implementation of a cooperative
Local Search parallel solver based on data parallelism. The key idea is to take
advantage of the many communications tools available in this APGAS model,
to exchange information between different solver instances in order to obtain a
more efficient and, most importantly, scalable solver implementation. We also
plan to test the behavior of a cooperative implementation under different HPC
architectures, such as the many-core Xeon Phi, GPGPU accelerators and grid
computing platforms.

References

1. David Butenhof. Programming With Posix Threads. Addison-Wesley Professional,
1997.

13

2. Philippe Codognet and Daniel Diaz. Yet another local search method for constraint
solving. In Kathleen Steinhöfel, editor, Stochastic Algorithms: Foundations and
Applications, pages 342–344. Springer Berlin Heidelberg, London, 2001.

3. Philippe Codognet and Daniel Diaz. An Efficient Library for Solving CSP with
Local Search. In 5th international Conference on Metaheuristics, pages 1–6, Kyoto,
Japan, 2003.

4. Teodor Gabriel Crainic and Michel Toulouse. Parallel Meta-Heuristics. In Michel
Gendreau and Jean-Yves Potvin, editors, Handbook of Metaheuristics, number
May, pages 497–541. Springer US, 2010.

5. Cray Inc. Chapel Language Specification Version 0.91. 2012.
6. Daniel Diaz, Salvador Abreu, and Philippe Codognet. Targeting the Cell Broad-

band Engine for constraint-based local search. Concurrency and Computation:
Practice and Experience (CCP&E), 24(6):647–660, 2011.

7. Tarek El-Ghazawi, William Carlson, Thomas Sterling, and Katherine Yelick. Wi-
ley: UPC: Distributed Shared Memory Programming - Tarek El-. Wiley, 2005.

8. I.P. Gent and T. Walsh. ”CSPLib: a benchmark library for constraints. Technical
report, 1999.

9. Serdar Kadioglu and Meinolf Sellmann. Dialectic Search. In Principles and Practice
of Constraint Programming (CP), volume 5732, pages 486–500, 2009.

10. Khronos OpenCL Working Group. OpenCL Specification. 2008.
11. Rui Machado, Salvador Abreu, and Daniel Diaz. Parallel Local Search : Experi-

ments with a PGAS-based programming model. In 12th International Colloquium
on Implementation of Constraint and Logic Programming Systems, pages 1–17,
Budapest, Hungary, 2012.

12. Rui Machado and Carsten Lojewski. The Fraunhofer virtual machine: a communi-
cation library and runtime system based on the RDMA model. Computer Science
- R&D, 23(3-4):125–132, 2009.

13. Danny Múnera, Daniel Diaz, and Salvador Abreu. Experimenting with X10 for Par-
allel Constraint-Based Local Search. In Ricardo Rocha and Christian Theil Have,
editors, Proceedings of the 13th International Colloquium on Implementation of
Constraint and LOgic Programming Systems (CICLOPS 2013), August 2013.

14. NVIDIA. CUDA C Programming Guide, 2013.
15. OpenMP. The OpenMP API specification for parallel programming.
16. Francesca Rossi, Peter Van Beek, and Toby Walsh, editors. Handbook of Constraint

Programming, volume 2 of Foundations of Artificial Intelligence. Elsevier Science,
2006.

17. Camille Salinesi, Raul Mazo, Olfa Djebbi, Daniel Diaz, and Alberto Lora-michiels.
Constraints : the Core of Product Line Engineering. In Conference on Research
Challenges in Information Science (RCIS), number ii, pages 1–10, Guadeloupe,
French West Indies, France, 2011.

18. Vijay Saraswat, George Almasi, Ganesh Bikshandi, Calin Cascaval, David Cun-
ningham, David Grove, Sreedhar Kodali, Igor Peshansky, and Olivier Tardieu. The
Asynchronous Partitioned Global Address Space Model. In The First Workshop
on Advances in Message Passing, pages 1–8, Toronto, Canada, 2010.

19. Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and David Grove.
X10 language specification - Version 2.3. Technical report, 2012.

20. Mark Snir, Steve Otto, Steven Huss-Lederman, David Walker, and Jack Dongarra.
MPI : The Complete Reference. The MIT Press, 1996.

21. Charlotte Truchet, Florian Richoux, and Philippe Codognet. Prediction of parallel
speed-ups for las vegas algorithms. 2013.

22. UPC Consortium, editor. UPC Language Specifications. 2005.

14

Algorithm 1 Adaptive Search Base Algorithm

Input: problem given in CSP format:

– set of variables V = {X1, X2 · · ·} with their domains
– set of constraints Cj with error functions
– function to project constraint errors on vars (positive) cost function to minimize
– T : Tabu tenure (number of iterations a variable is frozen on local minima)
– RL: number of frozen variables triggering a reset
– MI: maximal number of iterations before restart
– MR: maximal number of restarts

Output: a solution if the CSP is satisfied or a quasi-solution of minimal cost otherwise.

1: Restart← 0
2: repeat

3: Restart← Restart+ 1
4: Iteration← 0
5: Compute a random assignment A of variables in V

6: Opt Sol← A

7: Opt Cost← cost(A)
8: repeat

9: Iteration← Iteration+ 1
10: Compute errors constraints in C and project on relevant variables
11: Select variable X with highest error: MaxV

12: ⊲ not marked Tabu
13: Select the move with best cost from X: MinConflictV

14: if no improvement move exists then
15: mark X as Tabu for T iterations
16: if number of variables marked Tabu ≥ RL then

17: randomly reset some variables in V

18: ⊲ and unmark those Tabu
19: end if

20: else

21: swap(MaxV ,MinConflictV),
22: ⊲ modifying the configuration A

23: if cost(A) < Opt Cost then

24: Opt Sol← A

25: Opt Cost← costs(A)
26: end if

27: end if

28: until Opt Cost = 0 (solution found) or Iteration ≥MI

29: until Opt Cost = 0 (solution found) or Restart ≥MR

30: output(Opt Sol, Opt Cost)

15

