
HAL Id: hal-00819988
https://paris1.hal.science/hal-00819988v2

Submitted on 12 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intelligent Agile Method Framework
Marko Janković, Marko Bajec, Ghazaleh Khodabandelou, Rebecca Deneckere,

Charlotte Hug, Camille Salinesi

To cite this version:
Marko Janković, Marko Bajec, Ghazaleh Khodabandelou, Rebecca Deneckere, Charlotte Hug, et al..
Intelligent Agile Method Framework. 8th International Conference on Evaluation of Novel Approaches
to Software Engineering, Jun 2013, Anger, France. pp.187-192, �10.5220/0004562702320237�. �hal-
00819988v2�

https://paris1.hal.science/hal-00819988v2
https://hal.archives-ouvertes.fr

Intelligent Agile Method Framework

Marko Janković1, Marko Bajec1, Ghazaleh Khodabandelou2, Rebecca Deneckere2, Charlotte Hug2

and Camille Salinesi2
1Faculty of Computer and Information Science, University of Ljubljana, Tržaška cesta 25, SI-1000 Ljubljana, Slovenia

2Centre de Recherche en Informatique, University of Paris 1 Panthéon-Sorbonne, Paris, France
{marko.jankovic, marko.bajec}@fri.uni-lj.si,

{ghazaleh.khodabandelou, charlotte.hug, rebecca.deneckere, camille.salinesi}@univ-paris1.fr

Keywords: Situational Method Engineering; Software Development Improvement; Process Mining

Abstract: The paper addresses the problem of the low usage of software development methods in software development
practice. This has been recognized as one of the key reasons for failures in software development projects
and a contributor to the low quality of software. We introduce a novel approach that could help to improve
the maturity of software development processes. The approach is based on the method engineering principles
taking into account the limitations that hinder its use in practice. The main objective of our research is to show
that the method engineering concepts are applicable in real settings and that could contribute to the higher
quality of software development processes and their products.

1 INTRODUCTION

According to the literature, the use of software devel-
opment methods (SDM) in software industry proves
beneficial as it contributes to the higher quality of the
process and its product, i.e. the developed software
(van de Weerd et al., 2006), (Bekkers et al., 2008),
(Bajec et al., 2007), (Karlsson and Ågerfalk, 2004),
(Fitzgerald and Hartnett, 2005). Despite these evi-
dent benefits, the studies on the maturity of the soft-
ware development discipline show that a large percent
of software development companies do not have their
SDMs documented and those that have, do not really
follow them or do not follow them rigorously when
developing software. Several reasons have been iden-
tified in the past to explain this behavior. Two of them
seem to be most important: (1) rigidity, which does
not allow SDMs to be adapted to specifics of a par-
ticular project, and (2) their social inappropriateness
– i.e. prescribed methods are not based on the knowl-
edge, culture and attitude of the developers and other
stakeholders of the project (Riemenschneider et al.,
2002), (Mohan and Ahlemann, 2011), (Mirbel and
Ralyté, 2006), (Karlsson and Ågerfalk, 2004).

The above phenomenon has been widely acknowl-
edged in the research community and to some extent
also among the practitioners. The related problems
are severe. According to the research conducted by
McKinsey in collaboration with the University of Ox-

ford (Bloch et al., 2012), half of all large IT projects
(projects with initial price exceeding $15 million) run
over budget, over time or deliver less value than pre-
dicted. Furthermore, study conducted by Standish
Group (www.standishgroup.com), compiled into the
CHAOS Report 2009, reveal that only 16% of ob-
served projects have been finished in time; 32% were
terminated before they were completed; and 52%
were completed behind their schedule and involved
higher cost. All these facts show that this is not
an insignificant problem and that there is a need for
new ideas and approaches to confront with these chal-
lenges.

In this paper, we describe an approach that could
help to improve the maturity of software development
processes by circumventing the problems that hinder
the use of SDMs in practice. On the long run our
rather ambitious goal is to lower the risk for IT project
failures and to improve the overall quality of the de-
veloped software.

The approach is based on the method engineering
principles and represents a continuation of our past re-
search in this field (Bajec et al., 2007), (Vavpotic and
Bajec, 2009), (Žvanut and Bajec, 2010), (Hug et al.,
2012), (Deneckere et al., 2008).

In the paper we outline the main idea (Section 3),
provide its background (Section 2), describe the re-
search method (Section 4), and finally explain the re-
maining steps to be done (Section 5).

2 BACKGROUND

For decades, researchers have been striving to develop
new approaches and solutions as a response to low
usage of SDMs in practice. We can see the emer-
gence of configurable methods and supporting tools
(e.g. IBM Rational Method Composer (RMC), Mi-
crosoft Solutions Framework) that support configura-
tion and tailoring of SDMs to better suite the charac-
teristics of a particular project and organization (Gar-
cia et al., 2011). However, although these tools of-
ten also include best practices, formed on the basis of
vast experiences in software development, they still
require specific knowledge in order to be used effi-
ciently. To configure a method using IBM Rational
Method Composer, for example, we need to know
RUP in great details.

Another related domain is light and agile meth-
ods, which are more user-oriented, less complex and
thus easier to implement and use (Laanti et al., 2011),
(Dybå and Dingsøyr, 2008). In general, agile and
light methods are more adoptable, as they strive to be
closer to developers and do not bring such overhead
as traditional methods. But the fact is that compa-
nies keen of agile and light methods rarely use spe-
cific methods but rather just follow their vision. This
again leads to the fact that their ways of working are
not documented and that valuable knowledge gained
on development projects remain only in the heads of
individual developers.

Very related to our work is the discipline called
Method engineering (ME). Brinkkemper (1996) has
defined ME as an engineering discipline to design,
construct and adapt methods, techniques and tools for
the development of information system. A specific
sub-discipline of ME is situational method engineer-
ing (SME), which tends to support creation of meth-
ods from method parts or tailoring existing methods
to meet requirements of a specific project. A number
of approaches of SME (Ralyté and Rolland, 2001),
(Brinkkemper et al., 1998), (Deneckere et al., 2008),
have been proposed and developed, but despite the
fact that these methods are designed and elaborated
to be adapted, empirical researches show that their
application in practice is rare (Mirbel and Rivieres,
2002), (Ralyté and Rolland, 2001). A reason for the
latter can be found in the fact that creating and tai-
loring of methods is time-consuming and requires a
considerable commitment of the developers and other
stakeholders. Furthermore, to apply SME we need
a person that is familiar with numerous methods and
thus capable of constructing new methods by compos-
ing different fragments together. Furthermore, SME
approaches often do not consider social and techni-

cal aspects. This leads to prescribed methods that are
socially or technically noncompliant with the organi-
zation and developers, and consequently not accepted.
As an answer to that issue Bajec et al. (2008) have de-
veloped an innovative approach, called Agile Method
Framework (AMF). Main vision of this approach was
to bring SME principles closer to practitioners, by
considering social and technical aspects that influence
on how practitioners perceive usefulness of methods
as guidelines for their everyday work. Although the
results showed that AMF was in practice perceived
as useful, it was not fully accepted in the participat-
ing software companies, due to the fact that it still re-
quired the active involvement of developers. A more
detail review of the past research in the field of SME
can be found in the work of Henderson-Sellers et al.
(2010) .

3 INTELLIGENT AGILE
METHOD FRAMEWORK

The main idea of the approach that we call Intelli-
gent Agile Method Framework (in further text iAMF)
is to provide methods and tools to (a) help compa-
nies capture the software processes they are de-facto
using (i.e. the real ways of working when develop-
ing software), (b) help them follow these processes
consistently and finally (c) help them to continuously
improve and document what they do on IT projects.
While there are other approaches striving to the same
goal, the peculiarity of our approach is that it will
require only insignificant effort from the developers
and other stakeholders of the project. The latter is
one of the main reasons why similar initiatives and
approaches have not succeeded to penetrate in real
practice (Mirbel and Ralyté, 2006), (Karlsson and
Ågerfalk, 2012).

The first step in iAMF is to capture how projects
are typically performed in a particular company. Our
hypothesis is that if prescribed methods are not just
some off-the-shelf methods (such as RUP, SSADM
etc.) but rather based on the knowledge and experi-
ences of the company employees, and take into ac-
count the real ways of working in the company, then
it is much more likely that developers will follow
them rigorously. Instead of involving developers to
describe how they do projects, iAMF will learn from
the observation on what developers and other stake-
holders actually do on the projects, how they per-
form and act, and based on that create (document)
base methods. With a base method we denote a semi-
formal description of how a certain company is per-
forming its projects. Note that a particular company

Figure 1: High-level architecture of iAMF supporting toolset

might employ different software processes for differ-
ent projects. In this sense, the base method repre-
sents an overall method that comprises all the differ-
ent processes that a company is using when perform-
ing its projects. With the first step of the iAMF the
respected software process maturity rises to level 3
(documented).

Once base methods are captured, iAMF can be
used to supervise project performance and guide de-
velopers reusing the knowledge and past experience.
Any declination from base methods would be de-
tected and either prevented or treated as a new knowl-
edge and used to supplement the base method. By
this, iAMF facilitates continuous process improve-
ment, which helps to raise the maturity of the process
to level 4 (managed) or even 5 (optimized).

3.1 iAMF supporting toolset

In this section, a high-level architecture of the iAMF
toolset is presented (Figure 1). The purpose of the
toolset is to facilitate the iAMF and will be used in
the evaluation phase (see the section on Research Ap-
proach) to validate our approach. Further, we briefly
describe the toolset main components, their purposes
and communication.

3.1.1 Documenting base methods and
metamodels

To support the enactment of software process follow-
ing some prescribed SDM, the first step is to capture
and document the prescribed method, i.e. the base
method. Even though it is generally accepted that
elaboration of SDM have a positive influence on the
software development process (e.g. for the sake of
knowledge reuse and quality assurance), companies
very much differ in the level of details they believe is
useful to capture and document (Garcı́a et al., 2011).
Furthermore, keeping ways of working documented
and up-to-date is “expensive” and time-consuming.
One of the goals of the iAMF toolset is to enable ef-
ficient and user friendly capturing of base methods
and metamodels that underpin them. Companies can
select from metamodels that support known methods,
such as RUP, and adapt them to suit their purposes and
specifics, or to create new metamodels from scratch
(Bajec and Vavpotic, 2008). In the later phases meta-
models are crucial to check completeness and consis-
tency of the documented base methods. The toolset
also supports the creation of the map intentional pro-
cess models for intention mining purpose (see Inten-
tion mining). The described functionality is avail-
able through graphical user interface, which allows
method engineers to construct or update base methods

and metamodels, simply by dragging and dropping el-
ements on the screen and connecting them to express
their relationships. For each metaelement, method en-
gineers can enter detailed information, including tem-
plates that are then used to guide the documentation
of their instances.

3.1.2 Intention mining

Intention Mining aims to infer user intentions from
event logs (Khodabandelou et al., 2013b). Intention
mining uses event logs as input and allows (1) iden-
tifying intentional process models, (2) checking the
conformity between a prescribed intentional model
and its enactment, (3) identifying the gaps between
the model and the traces and (4) providing recommen-
dations to users at run-time, based on their reasoning
behind their activities (Khodabandelou et al., 2013a).

Intention mining is an important part of the iAMF
toolset. Its purpose is to gather information on inten-
tions the developers were following when perform-
ing various tasks and activities on past projects. For
this purpose trace-based tools will be employed. In-
stead of developing a completely new tool, we con-
ducted a research (Khodabandelou et al., 2013c),
which showed that open source tool Snare could be
efficiently used for our purposes, as it covered almost
all our requirements. The Snare will be used to col-
lect traces of activities and retrieve information about
what and how developers perform during projects.
Our expectation is that by the analysis of traces we
will be able to reconstruct intentions that guided de-
velopers when performing specific tasks and based
on that create intentional process models for further
guidance.

3.1.3 Providing methodological guidance

Once a base method and metamodels are captured,
the guidance can be provided to developers who are
novice or not familiar enough with the base method
their company is prescribing. To improve and person-
alize methodological guidance, collected traces will
be used to automatically categorize users according
to their profiles. Based on that and together with the
context at hand and history records, the users will be
provided with an advice on what step to take next in
a particular situation. Furthermore, process models
combined with examples of best practices will guide
developers to efficiently perform their activities. In
order to give users good overview and efficient guid-
ance, the iAMF toolset will provide graphical inter-
face for users to browse between various base meth-
ods, to get detailed information on a particular ele-

ment, or just to scroll through the base method visu-
alized as a process diagram or a navigation tree.

3.1.4 Controlling the use of base method

The most important feature of iAMF is the ability to
observe the method in action and to identify any de-
viation from the method the team members are ex-
pected to follow (base method). To detect deviations,
the proposed framework relies on two sources of in-
formation: (1) the base method that prescribes how
different kinds of projects should be carried out (see
also the section Documenting Base Methods) and (2)
the real method or method in action, which is not doc-
umented but can be inferred by observing what devel-
opers do and how they perform on projects.

To infer the in-action method we will intercept ev-
ery action a user does on the Revision control system
(RCS) (i.e. checking an artifact in or out), and on the
basis of (1) information gained from collected traces,
which hold information about the activities performed
before the action, (2) information extracted from the
content of the artifact with text mining, and (3) infor-
mation mined from RCS logs, predict current activity
and link it with the base method. If the action will
not be in accordance with the base method, the devel-
oper performing the action will be asked to provide
the explanation for the deviation. Sometimes the de-
viation will be unintentional and the developer will
be instructed to follow the prescribed method while
in other cases the deviation will be a result of a spe-
cific situation not seen before and will be thus used
to supplement the base method. For the beginning,
only support for Subversion and GIT that are major
revision control systems in use today, will be imple-
mented. However, a generic interface will be pro-
vided to support the information capture from a va-
riety of application and systems developers are using
to facilitate their work in software development.

With all the collected data we expect to be able to
infer the “path” that has been taken through the base
method as well the current stage of the project accord-
ing to the base method (e.g. which activities and arti-
facts have already been performed/produced and what
steps remains to be done). The collected data will also
be used to provide guidance for the developers on the
project.

3.1.5 Supplementing the base method

The deviations from base methods might have differ-
ent reasons. It might happen, for example, that the
user made a mistake, e.g. by taking some action that
was not expected according to the base method – i.e.

he checked in an artifact A, which was not yet re-
quired, while some other artifact B, which would need
to be created before the A, was not yet in the RCS.
But on the other hand, there might be specific circum-
stances that leaded the user to react differently than
prescribed by the base method. In the first case, the
user is expected to eliminate or compensate the mis-
take, e.g. by performing the activity he forgot and by
creating the missing artifact, while in the latter he has
to supplement the base method so that the new cir-
cumstances including possible new method elements
and relations would be covered for the future cases. In
this way the base method continuously complements
and improves.

4 RESEARCH APPROACH

The research positioned in this paper presents a join
work of researchers from the University of Ljubljana
and University of Paris 1. Both research groups are
experienced in the SME research field with good re-
search record. Their joint concern is to improve soft-
ware development practice by the application of the
SME approaches and principles. Having good con-
nections and experience with local industry, the teams
are seeking for cross-cultural collaboration that could
provide deeper understanding of the subject matter
and provide solutions that could be useful beyond
their local environments.

In this section we briefly outline the main phases
of the research:
Phase 1: Initiation. In the initiation phase we will
take care for the research environment. We will se-
lect the RCS systems that are most popular among
software companies so that we could then develop in-
terfaces to capture required information. Similarly, a
workflow-based enactment system will be selected to
be able to get detailed information on software pro-
cesses and specifically on developers’ behavior when
performing tasks within these processes. As a part of
the initiation phase we will try to identify and stimu-
late companies for their participation on the project.
To be able to evaluate the suggested approach in real
settings, we will invite several software companies
from Slovenia and France to participate in the re-
search. To cover the variety of the software industry,
we will try to involve companies of different sizes,
organizations, cultures, experiences, . . .
Phase 2: Implementation. In this phase we will im-
plement the required iAMF tools. These will include
all the components described in section 3, including
algorithms for mining intentions from process logs.
Phase 3: Testing. The iAMF will be first tested

within the university environment (at both universi-
ties). A group of students will use the framework as
a part of their seminar work. The purpose of these
tests will be to detect and eliminate software bugs, as
well as to get general opinion on the usability of the
framework. iAMF will be then improved based on the
testing results.
Phase 4: Evaluation. In the evaluation, our goal is
to empirically confirm the usability of the approach.
This is not an easy task, as it cannot be performed
within university environment. To get reliable feed-
back, several companies will be invited to evaluate the
framework. With the evaluation we will try to con-
firm the main hypotheses: (H1) If prescribed meth-
ods were based on real ways of working and up to
date then developers would follow them much more
rigorously. (H2) iAMF can provide efficient support
to project members by helping and guiding them in
software development projects. (H3) Developers and
other users do not perceive iAMF as an additional bur-
den and are willing to use it. (H4) By using iAMF,
companies can raise the maturity of their software
processes to at least level 3.

5 CONCLUSION

In this position paper we outlined a research that
aims at providing a novel approach for improving
software development practice. The approach con-
sists of a set of methods and tools that will help com-
panies to elaborate and continuously improve their
software processes, which will in-turn make them
more useful and usable for developers and other
stakeholders on software development projects. The
research proposed in this paper is due to its time-
consuming evaluation phase longitudinal. Giving any
concrete conclusion at this moment would be prema-
ture and risky.

REFERENCES

Bajec, M. and Vavpotic, D. (2008). A framework and
tool-support for reengineering software development
methods. Informatica, Lith. Acad. Sci., 19(3):321–
344.

Bajec, M., Vavpotič, D., and Krisper, M. (2007). Practice-
driven approach for creating project-specific software
development methods. Information and Software
Technology, 49(4):345–365.

Bekkers, W., van de Weerd, I., Brinkkemper, S., and
Mahieu, A. (2008). The influence of situational fac-
tors in software product management: An empirical
study. In Second International Workshop on Software

Product Management, 2008. IWSPM ’08, pages 41 –
48.

Bloch, M., Blumberg, S., and Laartz, J. (2012).
Delivering large-scale it projects on time,
on budget, and on value. Retrieved from
http://www.mckinsey.com/insights/business technology/.

Brinkkemper, S. (1996). Method engineering: engi-
neering of information systems development meth-
ods and tools. Information and Software Technology,
38(4):275–280.

Brinkkemper, S., Saeki, M., and Harmsen, F. (1998). As-
sembly techniques for method engineering. In Pro-
ceedings of the 10th International Conference on Ad-
vanced Information Systems Engineering, CAiSE ’98,
page 381–400, London, UK, UK. Springer-Verlag.

Deneckere, R., Iacovelli, A., Kornyshova, E., and Souveyet,
C. (2008). From method fragments to method ser-
vices. In Proc. Of EMMSAD’08, pages 80–96, Mont-
pellier, France.

Dybå, T. and Dingsøyr, T. (2008). Empirical studies of agile
software development: A systematic review. Informa-
tion and Software Technology, 50(9–10):833–859.

Fitzgerald, B. and Hartnett, G. (2005). A study of the use of
agile methods within intel. In Baskerville, R., Math-
iassen, L., Pries-Heje, J., and DeGross, J., editors,
Business Agility and Information Technology Diffu-
sion, volume 180 of IFIP International Federation for
Information Processing, pages 187–202. Springer US.

Garcia, F., Vizcaino, A., and Ebert, C. (2011). Process man-
agement tools. IEEE Software, 28(2):15 –18.

Garcı́a, J., Amescua, A., Sánchez, M.-I., and Bermón,
L. (2011). Design guidelines for software processes
knowledge repository development. Information and
Software Technology, 53(8):834–850.

Henderson-Sellers, B. and Ralyté, J. (2010). Situational
method engineering: State-of-the-art review. Journal
of Universal Computer Science, 16(3):424–478.

Hug, C., Deneckère, R., and Salinesi, C. (2012). Map-tbs:
Map process enactment traces and analysis. In RCIS,
pages 1–6.

Karlsson, F. and Ågerfalk, P. J. (2004). Method configura-
tion: adapting to situational characteristics while cre-
ating reusable assets. Information and Software Tech-
nology, 46(9):619–633.

Karlsson, F. and Ågerfalk, P. J. (2012). MC sandbox: De-
vising a tool for method-user-centered method con-
figuration. Information and Software Technology,
54(5):501–516.

Khodabandelou, G., Hug, C., Deneckère, R., and Salinesi,
C. (2013a). Process mining versus intention mining.
In Procs. EMMSAD’13, Valencia, Spain.

Khodabandelou, G., Hug, C., Deneckère, R., and Salinesi,
C. (2013b). Supervised intentional process models
discovery using hidden markov models. In Procs.
RCIS’13, Paris, France.

Khodabandelou, G., Hug, C., Deneckère, R., Salinesi, C.,
Bajec, M., Kornyshova, E., and Janković, M. (2013c).

A systematic review and selection of cots products
to trace method enactment. In Proceedings of the
21st European Conference on information Systems,
Utrecht, Netherland.

Laanti, M., Salo, O., and Abrahamsson, P. (2011). Ag-
ile methods rapidly replacing traditional methods at
nokia: A survey of opinions on agile transformation.
Information and Software Technology, 53(3):276–
290.

Mirbel, I. and Ralyté, J. (2006). Situational method en-
gineering: combining assembly-based and roadmap-
driven approaches. Requirements Engineering,
11(1):58–78.

Mirbel, I. and Rivieres, V. d. (2002). Adapting analysis
and design to software context: The JECKO approach.
In Bellahsène, Z., Patel, D., and Rolland, C., editors,
Object-Oriented Information Systems, number 2425
in Lecture Notes in Computer Science, pages 223–
228. Springer Berlin Heidelberg.

Mohan, K. and Ahlemann, F. (2011). What methodology
attributes are critical for potential users? understand-
ing the effect of human needs. In Mouratidis, H. and
Rolland, C., editors, Advanced Information Systems
Engineering, volume 6741 of Lecture Notes in Com-
puter Science, pages 314–328. Springer Berlin / Hei-
delberg.

Ralyté, J. and Rolland, C. (2001). An assembly process
model for method engineering. In Dittrich, K. R.,
Geppert, A., and Norrie, M. C., editors, Advanced
Information Systems Engineering, number 2068 in
Lecture Notes in Computer Science, pages 267–283.
Springer Berlin Heidelberg.

Riemenschneider, C., Hardgrave, B., and Davis, F. (2002).
Explaining software developer acceptance of method-
ologies: a comparison of five theoretical mod-
els. IEEE Transactions on Software Engineering,
28(12):1135 – 1145.

van de Weerd, I., Brinkkemper, S., Souer, J., and
Versendaal, J. (2006). A situational implementation
method for web-based content management system-
applications: method engineering and validation in
practice. Software Process: Improvement and Prac-
tice, 11(5):521–538.

Vavpotic, D. and Bajec, M. (2009). An approach for concur-
rent evaluation of technical and social aspects of soft-
ware development methodologies. Information and
Software Technology, 51(2):528–545.

Žvanut, B. and Bajec, M. (2010). A tool for IT process
construction. Information and Software Technology,
52(4):397–410.

