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Abstract—Product Lines (PL) have proved an effective 
approach to reuse-based systems development. Several 
modeling languages were proposed so far to specify PL. 
Although they can be very different, these languages show two 
common features: they emphasize (a) variability, and (b) the 
specification of constraints to define acceptable configurations. 
It is now widely acknowledged that configuring a product can 
be considered as a constraint satisfaction problem. It is thus 
natural to consider constraint programming as a first choice 
candidate to specify constraints on PL. For instance, the 
different constraints that can be specified using the FODA 
language can easily be expressed using boolean constraints, 
which enables automated calculation and configuration using a 
SAT solver. But constraint programming proposes other 
domains than the boolean domain: for instance integers, real, 
or sets. The integer domain was, for instance, proposed by 
Benavides to specify constraints on feature attributes. This 
paper proposes to further explore the use of integer constraint 
programming to specify PL constraints. The approach was 
implemented in a prototype tool. Its use in a real case showed 
that constraint programming encompasses different PL 
modeling languages (such as FORE, OVM, or else), and allows 
specifying complex constraints that are difficult to specify with 
these languages. 

Keywords: Product Line, Variability Model, Constraint 
Programing, Integer Constraints 

I. INTRODUCTION 
Product Line (PL) engineering has become an 

unavoidable approach to support reuse in systems 
development. The PL approach helps realize order-of-
magnitude improvements in time to market, cost, 
productivity, quality and flexibility. In research, many works 
were devoted to defining PL modeling languages, and others 
to PL configuration (ie defining product that reuse assets as 
defined in the PL models). Several works have shown that 
constraints play a central role in the determination of which 
products are permitted and which are not.  

This starts with the FODA notation, which offers ways to 
-starting from a bundle of features- constraints the number 
of those that can be included in a configuration. The 
“excludes” and “requires” constraints also allow us to 
specify that when a product includes a feature then, another 
one should be excluded or included too. 

Van Deursen [1] proposed to reason on feature models 
by translating them into a logic program using predicates 
such as all( ), one-of( ), or more-of( ), that respectively 
specify mandatory, mutually exclusive, and alternative 
features. For instance constraints: 

F1 = all (F2, F3, F4) 
F4 = one-of (F5, F6) 

specify that if F1 is included in a configuration, then F2, F3, 
and F4, and therefore either F5 or F6 should be included 
too. 

The use of constraint programming to reason about 
feature model was extended by Batory [2], who proposed an 
approach to transform a feature model into propositional 
formulae using the ∧, ∨, ¬, ⇒ and ⇔ operations of 
propositional logic. This enables for example constraints of 
the form  

F => A ∨ B ∨ C 
meaning that feature F needs features A or B or C, or any 

combination thereof. As Van Deursen's  [1] and Mannion's 
approaches [3], in these constraints, features are boolean 
variables (either they are included or not in a configuration). 
It is then possible to use a SAT solver to ensure the 
satisfiability of the set of boolean formulae. Another 
approach consists in using Constraint Programming (CP). 
Indeed, CP is a powerful paradigm for solving combinatorial 
problems arising in many domains, such as scheduling, 
planning, vehicle routing, configuration, networks or bio-
informatics. The idea of CP is to solve problems by stating 
constraints and finding a solution satisfying all the 
constraints. A constraint is simply a logical relation between 
several unknowns, these unknowns being variables that 
should take values in some specific domain of interest. A 
constraint thus restricts the degrees of freedom (possible 
values) the unknowns can take; it represents some partial 
information relating the objects of interest. The execution of 
a program mainly adds the constraints (incrementally) and 
asks the built-in solver to find a solution (an assignment of 
variables that satisfies the constraints). There are solvers for 
various domains: Finite Domains, Reals, Rationals, 
Booleans, Trees, Lists, Sets, Strings, etc. Among these 
domains, Finite Domain (FD) is the most useful in practice. 
An FD variable can take values inside an initial domain 
composed of a finite set of integers. An FD solver uses 
consistency techniques borrowed from CSP to maintain the 
consistency of the constraints. Obviously, it is possible to use 



an FD solver to solve boolean constraints. In [4] we have 
shown how to use FD constraints on [0..1] variables to 
efficiently encode boolean constraints such as ∧, ∨, ¬. We 
have also shown that for many problems, an FD solver can 
outperforms specific boolean solvers (SAT, BDD-based, 0-1 
programming). The initial work of Benavides used this 
approach to ensure the satisfiability of the boolean 
formulation associated to a PL model.  

Benavides et al [5] extended their previous work to 
reason about constraints specified on feature attributes also 
modeled as FD variables. Constraints such as  

F1.A = F2.B + F3.C 
can be specified to express that in any configuration, the 
value of attribute A associated with feature F1 should be 
equal to B+C where B and C are attributes respectively 
associated to F2 and F3. This allows to reason on extra 
functional features as defined by Czarnecki [6], ie relations 
between one or more attributes of one or different features. 

In this paper we propose to go further and to exploit 
more deeply the richness of CP over FD. We implemented 
these ideas in an interactive tool that allows the user to 
define a model (using various meta-models: FODA, FORE, 
OVM, and MAP), to configure it (possibly adding extra-
constraints), to explore various solutions, to backtrack and 
change some settings before a new derivation. This tool is 
based on our GNU Prolog system [7], which contains an 
efficient constraint solver over FD. Such a solver offers a 
wide variety of constraints, which we think have not yet 
been exploited to their full potential. For instance GNU 
Prolog offers: 

• arithmetic constraints (both linear and non-linear), 
e.g. X+Y < Z or X*Y<>Z. The use of min and max 
is also allowed inside those constraints. 

• symbolic constraints, e.g. atmost (2,[X,Y,Z,T],10) 
states that at most 2 variables among X,Y,Z,T can 
take the value 10. As another example the symbolic 
constraint element(I, [v1,v2,…,vN],X) enforces the 
variable X to be equal to the Ith element of the 
vector of N values [v1,…,vN]. 

• boolean constraints: GNU Prolog offers all boolean 
constraints such as ∧, ∨, ¬, ⇒, ⇔,… Variables 
appearing in such constraints are implicitely 
constrained to the domain [0..1]. 

• reified constraints: making it possible to reason on 
the issue (unsatisfied /satisfied) of a constraint. 
Namely, a constraint C can appear inside any 
(above) boolean constraint (constraints are first-class 
objects). As an example consider the boolean 
constraint X<Y => K=8. Its operational behavior is : 
as soon as the solver detects that X<Y it enforces 
K=8, conversely if it discovers K<> 8 it enforces 
X>=Y. 

Constraint programming has already been explored before 
to support the specification and analysis of PL. We believe 
that our approach is original because (a) it supports the 
specification of constraints that today can only be specified 
with various languages, (b) it supports in an integrated way 

the analysis of PL model constraints that so far can only be 
analyzed with separate approaches, and (c) it supports the 
specification of new kinds of constraints both on PL models 
and product requirements. 

For example, our approach allows us to implement 
reified constraints in a FODA PL model, such as:“whenever 
a feature F1 is included in a product, then constraint C (e.g. 
F2 excludes F3) shall be enabled”. 

This enables dynamic configuration by expressing extra 
constraints at configuration time. This is particularly 
important in practice since it is necessary to add/relax some 
constraints for given derivations [8]. Reified constraints can 
also be used to implement OVM's variation point 
dependencies as proposed by Pohl et al [9].  

Another interesting aspect of our approach is that the 
GNU-Prolog solver that is used supports the analysis of any 
kind of finite domain constraints, such as: “the value of 
attribute F1.A should always be equal to F2.B + F3.C” to 
control the value of integer feature attributes, as proposed 
by [5], but at the same time it permits to control the number 
of occurrences of a feature, as for instance in the constraint 
“a product should include at least 2 and at most 4 
occurrences of feature F”.Feature cardinalities were 
proposed by Czarnecki [6], but constraint analysis on 
feature cardinalities has not yet been tackled to our 
knowledge [10], and there is no tool available so far to 
support the analysis of constraints on feature cardinalities 
and on feature attributes in an integrated way. Finite domain 
constraints can also apply on any ENUM PL properties, like 
in the Decision King tool which uses them to control 
decision consistency [11]. 

Our approach also enables the specification of 
“complex” product requirements (complex compared to 
select or not a feature) under the form of additional 
constraints specified at the moment of configuration. For 
examples, our approach supports the specification of 
constraints such as “provide me with all possible 
configurations in which the value of feature attributes 
A1..Ai is in [a..b]”. This is useful in staged configuration 
[12]. Other new kinds of product-specific constraints such 
as: “ provide me with a configuration in which the values of 
all the attributes associated with features F1..Fn are 
different from each other”, and “provide me with all 
product configurations in which features F1...Fn are either 
all included or all excluded”. Such constraint can be used to 
query the PL model, that is useful for instance to explore 
configuration scenarios, or in a verification activity.  

Last, constraint programming is efficient in solving 
optimization problems. Our approach supports the 
specification and analysis of goals such as “identify the 
optimal configuration with respect to cost (min goal) and 
benefit (max goal) feature attributes” to detect “optimal” 
products and support decision making during the 
configuration activity [13].  

The rest of the paper is structured as follows: section 2 
presents a working example, which is used in section 3 to 



illustrate a series of types of constraints over FD that we 
propose to support PL specification and analysis. Section 4 
shows how these constraints are implemented in the GNU 
Prolog constraint reasoning platform. Section 5 discusses 
the effectiveness of our approach in the light of its 
application to a real example. Section 6 discusses related 
works. The concluding section presents our perspective on 
future works in the domain of constraint-programming 
based Product Line engineering. 

II. WORKING EXAMPLE 
Figure 1 shows the PL model of a family of simplified 

Vehicle Movement Control (VMC) systems using the 
FODA notation.  

The figure shows that:  
• control systems have four mandatory components, 

namely sensors,  actuators and processors, and a fifth 
optional one for feedback; 

• feedback can be visual, audio or by vibration, several 
kinds of feedback can be chosen, two at most in a 
single configuration; 

• sensors can either detect position or speed, and they 
can have an auto-test;  

• position sensors are mandatory; 
• speed sensors are optional; 
• when a speed sensor is included in a configuration, 

then vibration feedback must be excluded and 
conversely; 

• actuators can have auto tests to check functionality 
(mandatory), and memory (optional); 

• in addition to functionality, sensor auto-tests can 
check response time, and consistency check; 

• when a consistency check is included in a 
configuration, then response time check must be 
included too; 

• processors have internal memory. 

III. SPECIFYING PRODUCT LINE CONSTRAINTS USING 
FINITE DOMAIN 

The following subsections illustrate various kinds of 
constraints in the FD from the most simple (and common 

with respect to state of the art), to the most complex (and 
original). 

A. Modeling FODA-like constraints 
Specifying that a feature identified in a FODA model  

can be either included or excluded can very simply be done 
by defining a [0..1] domain to the feature where the 1 value 
would mean that the feature is included in the configuration, 
and the 0 value that it is not. 

Traditional FODA constraints can be specified on the 
[0..1] domain as follows: 

• F2 is a mandatory subfeature of F1 : F2 = F1; 
• F2 is an optional subfeature of F1 : F2 <= F1; 
• F1 requires F2 : F1 <= F2; 
F1 excludes F2 can be specified as : F1 + F2 <= 1. 

Another specification could be  F1 * F2 = 0 (GNU Prolog 
accepts non-linear constraints, however in some cases non-
linearity can penalize efficiency); 

• Min-Max cardinality of a bundle of subfeatures 
F1..Fk of a feature F: Min <= Σ1..k Fi, and Σ1..k Fi 
<= Max. 

In the VMC example, the Feedback, Visual, Audio, and 
Vibration features are features that can only be either 
included or not in a product configuration. Besides, at least 
one, and at most 2 of these features can appear at the same 
time in the same configuration. The constraints are thus the 
following ones : 

Visual <= Feedback, 
Audio <= Feedback, 
Vibration <= Feedback, 
Visual + Audio + Vibration >= 1, 
Visual + Audio + Vibration <= 2. 
Constraint programming on the [0..1] domain permits to 

specify other kinds of less usual kinds of constraints, such as: 
• F1 + F2 > 0 : this is an equivalent to the logical 

(inclusive) OR (as proposed by Mannion [3]): F1 or 
F2 or both features can be included in a 
configuration. In GNU Prolog we can simply write 
F1 \/ F2. 

• F1 + F2 = 1 : this constraint specifies a logical 
(exclusive) XOR. It indicates that either F1 or F2, 
but at least one of them, should be integrated in the 

 

Figure 1.  example of a simplistic vehicle movement control systems product line. 



configuration. The XOR shall be distinguished from 
FODA's 'excludes' according to which a 
configuration can include none of the features. 

• Σ1..k Fi > 0 : this allows to specify that at least one of 
the Fi should be selected, ie equivalent to a min 
cardinality constraint applied to a collection of 
independent features. 

• Σ1..k Fi =1 : this constraint specifies that only one of 
a collection of features can be selected. 

• Σ1..k Fi = 0 (alt < 1) : this constraint specifies that all 
the features of a collection are excluded. This 
constraint can be very useful in practice to impose 
some extra-restriction at configure-time. 

Back to the VMC example, let us assume that in addition 
to the cardinality constraints, the visual and audio feedback 
features are mutually exclusive: any configuration shall 
include either the one or the other but at least one of them. 
This XOR dependency can be specified with the constraint: 

Visual + Audio = 1 
It is interesting to notice that whereas constraints on pairs 

of features could easily be represented graphically in a 
FODA model, constraints programming allows to specify 
constraints on collection of features that can be quite distant 
from each other. Representing graphically such kind of 
feature in a model would be difficult and rapidly entail 
readability.  

Another interesting aspect of these constraints is that they 
could be rather straightforwardly be specified using boolean 
constraint programming. Specifying constraints in FD 
permits to specify other kinds of constraints that could more 
difficultly be specified with boolean constraints. For 
example: 

• F1 > F2 : F2 is required and F1 excluded. 
• F1 + F2 <= F3 : if F3 is included then either F1 or 

F2 is included; otherwise all are excluded. 
• F1 + F2 < F3 + F4 : more features from the {F3, 

F4} set shall be included than from the {F1, F2} set. 
This feature can, of course, be extended to larger 
sets. 

• 2 * F1 + F2 + F3 =2 : either F1 is included in the 
configuration, or both F2 and F3. Interestingly, one 
solution to specify this kind of constraint in FODA 
would be to artificially creating a fourth feature that 
represents F2 + F3. Of course the issue would then 
be of the actual meaning of this feature, of the link 
between F2 and F3 and their parent features, and of 
the place of the F4 feature in the model, which 
makes such a solution very unlikely.  

B. Reasoning about the number of occurrences of features  
In [Czanercki05], Czarnecki et al. introduce feature 

cardinality as the number of times a feature can be repeated 
in a product. This is useful to specify the number of times a 
feature is included in a product, as in bill of materials used in 
production, or to define a proportion, as defined in recipes in 
different sectors of the process industry, such as 
pharmaceutics, petro-chemistry, etc. 

This can be modeled associating an FD variable F to a 
feature whose initial domain is 0..N (N being the maximum 

number of occurrences of F). Two constraints are obviously 
needed :  

• F1 > a : to indicate that feature F1 shall be included 
at least one time in a configuration, and  

• F1 = a : to specify the exact number of times a 
feature can be included in a configuration.  

• But more complex constraint can arise, for instance: 
• at least one of two features should be included in a 

product: F1 + F2 > 0 
• at least one of a series of features should be included 

in a product: Σ1..k Fi > 0 
• there should be only one occurrence of two 

multivalued features: F1 + F2 = 1 
• the product should include no occurrence of a series 

of features: Σ1..k Fi = 0 (alt < 1) 
• the product should include more occurrences of a 

feature than of another: F1 > F2  
• the product should include more occurrences of a 

feature F1 than of two other features (F2 and F3) 
together: F1 + F2 <= F3; this is for example useful 
to specify that the VMC  products should include 
more processors than sensors and actuators. 

• the product should include more occurrences of a 
pair of features (F3, F4) than of another pair of 
features (F1, F2) together: F1 + F2 < F3 + F4; this 
is, for instance, useful to specify that the number of 
consistency check plus the number of response time 
auto test sensors should be superior to the number of 
memory check + the number of functionality checks 
in actuators 

• the number of occurrences of F1 should be the half 
of the number of occurrences of F2: 2 * F1 =F2; this 
can be used to specified that there should be two 
functionality checks auto tests per speed sensor. 

The specification of requires and excludes relationships 
is a little different when applied to multi-occurrence features 
than with [0..1] features. For instance, in the VMC example, 
Vibration and Speed Sensor are mutually exclusive. This 
exclusion can be specified by the constraint: 

(SpeedSensor <> 0) <=> (Vibration = 0) 
or more simply 

(SpeedSensor > 0) XOR (Vibration > 0) 
The VMC example also contains a requires dependency 

from Consistency Check to Response Time Check. This can 
be specified by the constraint: 

ResponseTimeCheck <= ConsistencyCheck 
However, another kind of “requires” dependency could 

be specified to indicate that each instance of a feature 
requires an instance of another feature. In the VMC example, 
this would be the case if one actuator is required for each 
sensor. The constrain is specified as  

Actuator >= Sensor 
If in addition, actuators are only needed in product to 

control sensors, then the requires dependency is specified 
with an even stricter constraint: 

Actuator = Sensor 
or if n additional sensors are needed for other purposes: 

Actuator + n = Sensor 



Another use of constraints on the [0..n] domain in PL is 
to apply them to feature attributes, as proposed by 
Bennavides [5] with attributes associated to {true, false} 
features. In [13], we have demonstrated how to specify 
constraints on attributes to reason on goal based product 
configuration, to guide for example a cost/benefit analysis of 
products during their configuration. 

C. Reified constraints 
In [12], Czarnecki et al. define a new feature modeling 

language to account for staged configuration. The 
fundamental of stage configuration is to enable constraints 
that shall be associated to a configuration model, which shall 
itself be considered as a PL model. 

Staged configuration can be found useful when not all 
constraints shall be verified at once, but enabled in a ordered 
fashion. In general the reification of the constraint C into a 
variable B of the [0..1] domain is achieved by a constraint:  

C <=> B = 1 
that establishes a correspondence between B and C as 

follows: B = 1 iff  C is true (thus B <> 1 (i.e. equal to 0) iff 
C is false).  

The constraints of a PL model that shall only be verified 
at a stage of configuration identified must be reified. 
Identifying stages of configuration can be done either using 
an FD variable that represents time (the version number of 
the configuration), or it can be conditioned by the inclusion 
of a feature in the configuration. The following constraints 
shall be specified in the latter case: 

• F1 = 1 => B : whenever F1 is included, the 
constraint C reified with the B variable should be 
satisfied.  

• F1 = 0 => B : whenever F1 is excluded, the 
constraint C reified with B should be satisfied.  

Of course, these constraints reification could also be 
directly specified as: 

F1 = 1 => C, and 
F1 = 0 => C. 

In the VMC example, it would for instance be possible to 
generate PLM models from the PL model to specify sub 
families of VMC. One interesting such kind of sub family is 
this in which a position actuator is associated with each 
position sensor. Another aspect of this sub-family is that it 
can be managed only as soon as there is a central processor 
with a 1024 Ko internal memory. 

The constraint can be reified as follows : 
(Processor = 1) ∧ (InternalMemory = 1024)  => B 

with 
B <=> (Position_Sensor = Position_Actuator) 

Reified constraint can also be used to specify constraint 
over decision points, as in [9] as follows. Assuming that a 
decision point D, specified using constraints C1..Cn, a 
constraint C on D shall simply be expressed as: 

C => D, where 
D <=> C1 ∧ .. ∧ Cn 

to indicate that whenever condition C is met (e.g. a 
feature is included in a configuration: F>0), the constraints 
associated with decision point D shall be satisfied. 

D. Symbolic constraints 
CP over FD supports the specification and analysis of 

symbolic constraints, ie constraints that are checked on 
collections of variables. Here are some symbolic constraints: 

• Alldifferent(F1, .., Fk) : specifies that in any 
configuration the value of each of the F1 to Fk 
features should be different pairwise. This could be 
specified by k (k-1) / 2 inequality constraints 
between each par of feature. 

• Atmost(n, F1..Fk, a) : specifies that at most n of the 
F1 to Fk features are equal to a. 

• Atleast(n, F1..Fk, a) : specifies that at least n of the 
F1 to Fk features are equal to a. 

• Exactly(n, F1..Fk, a) : specifies that exacltyt n of the 
F1 to Fk features are equal to a. 

• Relation(F1..Fk, {a1..ak}) – constraints the tuple of 
Feature F1..Fk to be equal to at least one tuple in the 
collection of tuples {a1..ak}. This allows to specify 
extensively a predetermined collection of compatible 
values for [0..n] features. 

In the VMC example, symbolic constraints can be used 
for instance to specify predefined combinations of the 
number of Sensors, actuators and internal memory in 
configurations: 

Relation ([Sensor, Actuator, InternalMemory], [ 
 [1, 1, 32], 
 [1, 2, 64], 
 [2, 1, 64], 

 [2, 2, 128], 
 [3, 3, 512] 

 [4, 4, 1024]]) 
Reified constraints could also be used to specify the 

choosen,m (F1, … ,Fk) predicate proposed by [2] to indicate 
that at most m and at least n of the F1...Fk {true, false} 
constraints shall be included (true) in the configuration. The 
specification can be done with two symbolic constraints : 

Atleast (n, F1..Fk, 1),  
Atmost(m, F1..Fk, 1) 

The versatility of CP can also be used to specify these 
constraints on {true, false} feature using two generalized 
versions of the Σ1..k Fi > 0 constraint: 

min <= Σ1..k Fi 
Σ1..k Fi <=  max 

which  indicates that at least min and at most max 
features of the collection of Fi features shall be included in 
the same configuration.  

One can easily see that these constraints offer a power of 
expression that go beyond the choice predicate. Indeed, they 
can not only be used to specify the minimal and maximal 
number of features to exclude, but also with [0...n] features 
to specify the minimal and maximal number of features that 
are instantiated a given number of times in the product. 

IV. TOOL IMPLEMENTATION 
Developing a constraint program that specifies a product 

line model is quite straightforward. For example, the feature 
model presented in Figure 1 augmented with some of the 



constraints presented in section 3 can be specified with the 
following program: 

 
pl(L):- 

L = [VMC, Sensor, Actuator, Processor, 
Feedback, SpeedSensor, SensorAutoTest, 
PositionSensor, PositionActuator, 
ActuatorAutoTest, InternalMemory, 
ConsistencyCheck, ResponseTimeCheck, 
SensorFunctionalityCheck, Feedback, 
MemoryCheck, 
ActuatorFunctionalityCheck, Visual, 
Audio, Vibration], 

 fd_domain([VMC], 0, 1), 
 fd_domain([Sensor, SpeedSensor, 

PositionSensor, SensorAutoTest, 
ConsistencyCheck, ResponseTimeCheck, 
SensorFunctionalityCheck], 0, 4), 

 fd_domain([Actuator, PositionActuator, 
ActuatorAutoTest, MemoryCheck, 
ActuatorFunctionalityCheck], 0, 100), 

 fd_domain([Feedback, Visual, Audio, 
Vibration], 0, 1),   

 fd_domain([Processor], 0, 1), 
 fd_domain([InternalMemory], [32, 64, 

256, 512, 1024]), 
 Sensor #> VMC, 
 Actuator #> VMC, 
 Processor #> VMC, 
 PositionSensor #= Sensor, 
 SpeedSensor #=< Sensor, 
 SensorAutoTest #=< Sensor, 
 SensorFunctionalityCheck #= 

SensorAutoTest, 
 ConsistencyCheck #=< SensorAutoTest, 
 ResponseTime #=< SensorAutoTest, 
 ResponseTime #=< ConsistencyCheck, 
 Visual #=< Feedback, 
 Audio #=< Feedback, 
 Vibration #=< Feedback, 
 Visual + Audio + Vibration #>= 1, 
 Visual + Audio + Vibration #=< 2, 
 PositionActuator #= Actuator, 
 ActuatorAutoTest #=<Actuator, 
 MemoryCheck #=< ActuatorAutoTest, 
 ActuatorFunctionalityCheck #= 

ActuatorAutoTest, 
 SpeedSensor #\= 0 #<=> Vibration #= 0,  

 fd_labeling(L).   % To find one 
solution 

 
We developed an interactive tool that : 
• offers a graphical editor [14] that supports the 

drawing, loading and saving of PL models specified 
with different languages (FORE, XMI, and textual 
constraints); A screen dump of our tool interface is 
shown in Figure 2;  

• compiles the model and generates the associated 
constraint program (as in the above example). This 
program can be consulted and/or modified by the 
user; 

• allows the user to start a configuration process. This 
includes the addition of extra-constraints (whose 
lifetime is the configuration phase only), the addition 
of some optimization criterion, the computation of a 
solution, the interactive exploration of alternative 
solutions,… 

• supports multi-language PL modeling and analysis 
tool [15]. 

A model validity checker is being implemented to 
support the analysis of a series of structural and semantic 
verification criteria [14]. So far, the verification function is 
implemented using procedural programs, whereas in fact our 
verification criteria were defined using first order logic., here 
again the underlying Prolog system will help us. 

V. FEASIBILITY STUDY WITH A REAL CASE STUDY 
One particular question that can be raised about the new 

kinds of constraints that have been identified in this paper is 
“are they useful?”. Although only long term experience shall 
provide a definitive answer to this question, one might be 
interested in looking for special constraints that could be 
specified in a real case. 

To do so, we have used our CP over FD approach to 
specify constraints on a family of blood analysis automatons. 
We had the opportunity to model this PL using the FODA in 
the context of a cooperation with the STAGO company [13].  

Applying the derivation rules proposed at the beginning 
of section 2.1 on the feature model shown in figure 2 
generated about around 50 constraints on [0..1] features. 

Of course, constraints that were associated to {true, 
false} features were, as we propose it, declared with a [0..1] 
domain to enable the addition of supplementary constraints.  



Using FD constraints allowed us to specify the same 
constraints as the one that we had identified to reason about 
costs and revenue of each features. To do so, we associated 
[0..n] attributes to each features to specify costs and 
benefits. We, of course, had to define a fix value for n – we 
chose to use the same maximum cost and revenue for all 
feature for the purpose of the study. 

For example, we specified constraints on the minimal 
number of measurement wells depending on the required 
tests and the required cadence for these tests. 

Chronometric.NumberOfWells + 
Colorimetric.NumberOf Wells + 
Immunologic.NumberOfWells >= 
max(LaunchTest.TestCadence) * 
max(LaunchTest.TestDuration) 

We could also specify that the initially optional function 
‘Agitate’ must be implemented whenever one of the tests 
TP, TT, Fib, VwF or DDi are included 

(LaunchTest.TestType <> TCA) ∨ (LaunchTest.TestType 
<> ATIII) ∨ ((LaunchTest.TestType <> PC) => 
Agitate = 1 

Looking at our list of FD specific constraints, we 
identified constraints that could not be specified before (ie 
with {true, false} features), namely: 

• constraints on both [0..n] features and feature 
attributes. For example, we could play with the 
number of chronometric, colorimetric and 
immunologic measure dwells and specify a 
constraint on the number of their occurrence 

• Chronometric + Colorimetric + Immunologic >= 
LauchTest.TestCadence * LauchTest.TestDuration 

• symbolic constraints such as: 
• Atmost (1, [Agitate, Mix, Incubate], 2] 
• to specify that each activity in a methodology can be 

repeated at most twice  
• Another example of use of symbolic constraints was 

to specify possible combinations of value of the 
cadence, duration, and kind of determination for 
different kinds of test types: 

Relation ([LauchTest.TestType, LauchTest.TestDuration, 
LauchTest.TestCadence, determination], [ 

[TP, 2, 14, simple],  
[TP, 2, 14, double], 
[TCA, 2, 14, simple], 
[TT, 3, 2, double], 
[Fib, 10, 5, double], 
[ATIII, 15, 3, double], 
[VwF, 13, 8, double], 
[PC, 2, 6, simple], 
[DDi, 6, 8, simple]])  

• Last, we were able to specify reified constraints such 
as 

LaunchTest.TestType = TCA <=> C 
C => Chronometric = 1 ∧ Chronometric.Speed = normal 

which enforces the use chronometric measurement 
technique when TCA test is demanded. It specifies also the 
required speed for this test.  

We also used feature attributes to support cost/benefit 
analysis on measurement techniques. The following goals 
could for instance be specified: 

Min (Chronometric.Cost * 
Chronometric.NumberOfWells + Colorimetric.Cost * 

 

Figure 2.  Extract of STAGO PL specification developed with our tool. Each view on the PL (FORE, XMI, textual constraints on features) can 
be accessed by a specific tab. Details on the specifications are given in [13]. 



Colorimetric.NumberOfWells + Immunologic.Cost * 
Immunologic.NumberOfWells), and 

Max (Chronometric.Revenue * 
Chronometric.NumberOfWells + Colorimetric.Revenue * 
Colorimetric.NumberOfWells + Immunologic.Revenue * 
Immunologic.NumberOfWells) 

Our observations are also the following ones: 
• Incremental development and maintenance of PL 

models is made possible as long as models are 
modified by adding constraints. 

• GNU-Prolog computes very efficiently a first 
complete solution w.r.t. the selected/excluded 
features. In practice, this helped us in the 
configuration process as it provided a general idea of 
the product that was being built. 

• GNU-Prolog computation of the next solution was 
effective as it offered an alternative to the 
configurations that had already been explored. 
Iterating over this function allowed to review the 
various solutions one by one – or to identify that the 
variability space was still very open by counting the 
number of remaining configurations that satisfied the 
constraints for the requirements at hand. 

These results are encouraging and confirm that CP over 
FD is well suited to precisely model and efficiently configure 
PL.  

VI. RELATED WORKS 
This paper is not the first to explore the use of constraint 

programming in the context of PL. Some proposals had been 
made to support automatic analysis of feature-based models 
in order to allow retrieving information. 

The greatest number of works to automate features 
analysis is based on propositional logic. First-order logic is 
used to check validity of feature models [16] [17] [18] but 
also to reason about them [19] [2] [1]. Our approach belongs 
to a family of approaches that relies on constraints 
specification (in particular the integer domain) rather than on 
{true, false} features. The simple fact of replacing the {true, 
false} domain by [0..1] opens the door to kinds of constraints 
that did not exist in the aforementioned approaches. 

Czarnecki's proposals of staged configuration, valued 
features, and feature attributes has created an opportunity to 
move from boolean to integer constraints specification. 
Benavides's works [5] and [13] have in particular shown  
how PL could be analyzed by specifying integer constraints 
on attributes associated with features. In Benavides's 
approach, features themselves still have a {true, false} 
domain. 

Our approach goes a step further by exploring FD 
Constraint Programming. For example, it shows how to deal 
with [0..n] features, how to deal with staged configuration, 
and it uses the versatility of constraint programming to 
provide numerous types of constraints that were not 
proposed in the approaches referenced before. 

VII. PERSPECTIVE ON FUTURE WORKS 
An important challenge for RE in PL development is 

ensuring the consistency of requirements and product line 
variability so as to allow configuring the right products. This 
challenge is even more difficult to meet as, in practice, 
requirements are mostly expressed using several languages 
[20]. 

Indeed, it is widely recognized that the complexity of 
current software development justifies the simultaneous use 
of several models to specify and communicate various views 
and aspects of a system with regards to the involved 
stakeholders (executives, developers, distributors, marketing, 
architects, testers, etc.). These models include requirements 
stating the capabilities of the PL, but also other kinds of 
requirements such as strategic goals, development 
constraints and component reuse restrictions that are of most 
interest when making decisions about product 
configurations. In the other hand, an insufficient 
consideration of all necessary views leads to a problem 
understanding lack and so the failure of software projects. 

Besides, the perception of variability often depends on 
the organization and the area of expertise of the involved 
stakeholders. It is not unusual that different delivered models 
are expressed using heterogeneous variability notations 
within a single project development. For example, analysts 
may deliver a requirements model based on use cases 
describing a high-level, user-oriented view on system 
functionality; while architects may deliver a feature-based 
model focusing on system structure and interaction from a 
more technical, design-oriented point of view. In the absence 
of a global view, and given the complexity of the 
communication, it’s not surprising that requirements get 
missed or misunderstood. 

What is clearly needed in the future is a systematic way 
to capture all the information given by the various 
viewpoints and to organize it so that missing information is 
more easily identified, the full impact of change is more 
easily understood, and dependencies are explicitly discerned 
so that configuration is facilitated. It would be beneficial as 
well if the captured information could refer to the same 
representation of variability so that models are better 
construed and integrated. 

In this regard, a constraint programming based approach 
could easily be used for integrating PL models, then 
verifying their consistency, and configuring product lines in 
an integrated way, ie dealing with requirements from 
different viewpoints and various kinds of variable artifacts at 
the same time. 

This paper only deals with constraint programming over 
FD. The outcome of our approach is multiple: first, 
constraints from different modeling languages can be 
specified and reasoned about. Second, constraints from 
different product line models can be integrated in a unique 
program and solved in an integrated way -even when the 
models are specified with different languages. Third, 
constraints that to our knowledge could not be specified in 
existing languages can be specified. 



We explored constraint programming on finite domains, 
but many other domains could be relevant : Reals, Intervals, 
Rationals, Booleans, Rational Trees, Lists, Strings and Sets. 
Constraint Programming is versatile in that it adapts quite 
well to different applications. We have little doubt that the 
systematic exploration of these domains will generate new 
knowledge about product lines engineering. 
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