
HAL Id: hal-00662891
https://paris1.hal.science/hal-00662891

Submitted on 22 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Using Integer Constraint Solving in Reuse Based
Requirements Engineering

Camille Salinesi, Raul Mazo, Daniel Diaz, Olfa Djebbi

To cite this version:
Camille Salinesi, Raul Mazo, Daniel Diaz, Olfa Djebbi. Using Integer Constraint Solving in Reuse
Based Requirements Engineering. 18th IEEE International Requirements Engineering Conference
(RE), 2010, Sep 2010, Sydney, Australia. pp.243-251, �10.1109/RE.2010.36�. �hal-00662891�

https://paris1.hal.science/hal-00662891
https://hal.archives-ouvertes.fr

Using Integer Constraint Solving in Reuse Based Requirements Engineering

Camille Salinesi, Raul Mazo, Daniel Diaz, Olfa Djebbi
Centre de Recherche en Informatique

Université Paris 1 Pantéhon – Sorbonne
Paris, France

Camille.Salinesi@univ-paris1.fr, Raul.Mazo@malix.univ-paris1.fr,
Daniel.Diaz@univ-paris1.fr, Olfa.Djebbi@malix.univ-paris1.fr

Abstract—Product Lines (PL) have proved an effective
approach to reuse-based systems development. Several
modeling languages were proposed so far to specify PL.
Although they can be very different, these languages show two
common features: they emphasize (a) variability, and (b) the
specification of constraints to define acceptable configurations.
It is now widely acknowledged that configuring a product can
be considered as a constraint satisfaction problem. It is thus
natural to consider constraint programming as a first choice
candidate to specify constraints on PL. For instance, the
different constraints that can be specified using the FODA
language can easily be expressed using boolean constraints,
which enables automated calculation and configuration using a
SAT solver. But constraint programming proposes other
domains than the boolean domain: for instance integers, real,
or sets. The integer domain was, for instance, proposed by
Benavides to specify constraints on feature attributes. This
paper proposes to further explore the use of integer constraint
programming to specify PL constraints. The approach was
implemented in a prototype tool. Its use in a real case showed
that constraint programming encompasses different PL
modeling languages (such as FORE, OVM, or else), and allows
specifying complex constraints that are difficult to specify with
these languages.

Keywords: Product Line, Variability Model, Constraint
Programing, Integer Constraints

I. INTRODUCTION
Product Line (PL) engineering has become an

unavoidable approach to support reuse in systems
development. The PL approach helps realize order-of-
magnitude improvements in time to market, cost,
productivity, quality and flexibility. In research, many works
were devoted to defining PL modeling languages, and others
to PL configuration (ie defining product that reuse assets as
defined in the PL models). Several works have shown that
constraints play a central role in the determination of which
products are permitted and which are not.

This starts with the FODA notation, which offers ways to
-starting from a bundle of features- constraints the number
of those that can be included in a configuration. The
“excludes” and “requires” constraints also allow us to
specify that when a product includes a feature then, another
one should be excluded or included too.

Van Deursen [1] proposed to reason on feature models
by translating them into a logic program using predicates
such as all(), one-of(), or more-of(), that respectively
specify mandatory, mutually exclusive, and alternative
features. For instance constraints:

F1 = all (F2, F3, F4)
F4 = one-of (F5, F6)

specify that if F1 is included in a configuration, then F2, F3,
and F4, and therefore either F5 or F6 should be included
too.

The use of constraint programming to reason about
feature model was extended by Batory [2], who proposed an
approach to transform a feature model into propositional
formulae using the ∧, ∨, ¬, ⇒ and ⇔ operations of
propositional logic. This enables for example constraints of
the form

F => A ∨ B ∨ C
meaning that feature F needs features A or B or C, or any

combination thereof. As Van Deursen's [1] and Mannion's
approaches [3], in these constraints, features are boolean
variables (either they are included or not in a configuration).
It is then possible to use a SAT solver to ensure the
satisfiability of the set of boolean formulae. Another
approach consists in using Constraint Programming (CP).
Indeed, CP is a powerful paradigm for solving combinatorial
problems arising in many domains, such as scheduling,
planning, vehicle routing, configuration, networks or bio-
informatics. The idea of CP is to solve problems by stating
constraints and finding a solution satisfying all the
constraints. A constraint is simply a logical relation between
several unknowns, these unknowns being variables that
should take values in some specific domain of interest. A
constraint thus restricts the degrees of freedom (possible
values) the unknowns can take; it represents some partial
information relating the objects of interest. The execution of
a program mainly adds the constraints (incrementally) and
asks the built-in solver to find a solution (an assignment of
variables that satisfies the constraints). There are solvers for
various domains: Finite Domains, Reals, Rationals,
Booleans, Trees, Lists, Sets, Strings, etc. Among these
domains, Finite Domain (FD) is the most useful in practice.
An FD variable can take values inside an initial domain
composed of a finite set of integers. An FD solver uses
consistency techniques borrowed from CSP to maintain the
consistency of the constraints. Obviously, it is possible to use

an FD solver to solve boolean constraints. In [4] we have
shown how to use FD constraints on [0..1] variables to
efficiently encode boolean constraints such as ∧, ∨, ¬. We
have also shown that for many problems, an FD solver can
outperforms specific boolean solvers (SAT, BDD-based, 0-1
programming). The initial work of Benavides used this
approach to ensure the satisfiability of the boolean
formulation associated to a PL model.

Benavides et al [5] extended their previous work to
reason about constraints specified on feature attributes also
modeled as FD variables. Constraints such as

F1.A = F2.B + F3.C
can be specified to express that in any configuration, the
value of attribute A associated with feature F1 should be
equal to B+C where B and C are attributes respectively
associated to F2 and F3. This allows to reason on extra
functional features as defined by Czarnecki [6], ie relations
between one or more attributes of one or different features.

In this paper we propose to go further and to exploit
more deeply the richness of CP over FD. We implemented
these ideas in an interactive tool that allows the user to
define a model (using various meta-models: FODA, FORE,
OVM, and MAP), to configure it (possibly adding extra-
constraints), to explore various solutions, to backtrack and
change some settings before a new derivation. This tool is
based on our GNU Prolog system [7], which contains an
efficient constraint solver over FD. Such a solver offers a
wide variety of constraints, which we think have not yet
been exploited to their full potential. For instance GNU
Prolog offers:

• arithmetic constraints (both linear and non-linear),
e.g. X+Y < Z or X*Y<>Z. The use of min and max
is also allowed inside those constraints.

• symbolic constraints, e.g. atmost (2,[X,Y,Z,T],10)
states that at most 2 variables among X,Y,Z,T can
take the value 10. As another example the symbolic
constraint element(I, [v1,v2,…,vN],X) enforces the
variable X to be equal to the Ith element of the
vector of N values [v1,…,vN].

• boolean constraints: GNU Prolog offers all boolean
constraints such as ∧, ∨, ¬, ⇒, ⇔,… Variables
appearing in such constraints are implicitely
constrained to the domain [0..1].

• reified constraints: making it possible to reason on
the issue (unsatisfied /satisfied) of a constraint.
Namely, a constraint C can appear inside any
(above) boolean constraint (constraints are first-class
objects). As an example consider the boolean
constraint X<Y => K=8. Its operational behavior is :
as soon as the solver detects that X<Y it enforces
K=8, conversely if it discovers K<> 8 it enforces
X>=Y.

Constraint programming has already been explored before
to support the specification and analysis of PL. We believe
that our approach is original because (a) it supports the
specification of constraints that today can only be specified
with various languages, (b) it supports in an integrated way

the analysis of PL model constraints that so far can only be
analyzed with separate approaches, and (c) it supports the
specification of new kinds of constraints both on PL models
and product requirements.

For example, our approach allows us to implement
reified constraints in a FODA PL model, such as:“whenever
a feature F1 is included in a product, then constraint C (e.g.
F2 excludes F3) shall be enabled”.

This enables dynamic configuration by expressing extra
constraints at configuration time. This is particularly
important in practice since it is necessary to add/relax some
constraints for given derivations [8]. Reified constraints can
also be used to implement OVM's variation point
dependencies as proposed by Pohl et al [9].

Another interesting aspect of our approach is that the
GNU-Prolog solver that is used supports the analysis of any
kind of finite domain constraints, such as: “the value of
attribute F1.A should always be equal to F2.B + F3.C” to
control the value of integer feature attributes, as proposed
by [5], but at the same time it permits to control the number
of occurrences of a feature, as for instance in the constraint
“a product should include at least 2 and at most 4
occurrences of feature F”.Feature cardinalities were
proposed by Czarnecki [6], but constraint analysis on
feature cardinalities has not yet been tackled to our
knowledge [10], and there is no tool available so far to
support the analysis of constraints on feature cardinalities
and on feature attributes in an integrated way. Finite domain
constraints can also apply on any ENUM PL properties, like
in the Decision King tool which uses them to control
decision consistency [11].

Our approach also enables the specification of
“complex” product requirements (complex compared to
select or not a feature) under the form of additional
constraints specified at the moment of configuration. For
examples, our approach supports the specification of
constraints such as “provide me with all possible
configurations in which the value of feature attributes
A1..Ai is in [a..b]”. This is useful in staged configuration
[12]. Other new kinds of product-specific constraints such
as: “ provide me with a configuration in which the values of
all the attributes associated with features F1..Fn are
different from each other”, and “provide me with all
product configurations in which features F1...Fn are either
all included or all excluded”. Such constraint can be used to
query the PL model, that is useful for instance to explore
configuration scenarios, or in a verification activity.

Last, constraint programming is efficient in solving
optimization problems. Our approach supports the
specification and analysis of goals such as “identify the
optimal configuration with respect to cost (min goal) and
benefit (max goal) feature attributes” to detect “optimal”
products and support decision making during the
configuration activity [13].

The rest of the paper is structured as follows: section 2
presents a working example, which is used in section 3 to

illustrate a series of types of constraints over FD that we
propose to support PL specification and analysis. Section 4
shows how these constraints are implemented in the GNU
Prolog constraint reasoning platform. Section 5 discusses
the effectiveness of our approach in the light of its
application to a real example. Section 6 discusses related
works. The concluding section presents our perspective on
future works in the domain of constraint-programming
based Product Line engineering.

II. WORKING EXAMPLE
Figure 1 shows the PL model of a family of simplified

Vehicle Movement Control (VMC) systems using the
FODA notation.

The figure shows that:
• control systems have four mandatory components,

namely sensors, actuators and processors, and a fifth
optional one for feedback;

• feedback can be visual, audio or by vibration, several
kinds of feedback can be chosen, two at most in a
single configuration;

• sensors can either detect position or speed, and they
can have an auto-test;

• position sensors are mandatory;
• speed sensors are optional;
• when a speed sensor is included in a configuration,

then vibration feedback must be excluded and
conversely;

• actuators can have auto tests to check functionality
(mandatory), and memory (optional);

• in addition to functionality, sensor auto-tests can
check response time, and consistency check;

• when a consistency check is included in a
configuration, then response time check must be
included too;

• processors have internal memory.

III. SPECIFYING PRODUCT LINE CONSTRAINTS USING
FINITE DOMAIN

The following subsections illustrate various kinds of
constraints in the FD from the most simple (and common

with respect to state of the art), to the most complex (and
original).

A. Modeling FODA-like constraints
Specifying that a feature identified in a FODA model

can be either included or excluded can very simply be done
by defining a [0..1] domain to the feature where the 1 value
would mean that the feature is included in the configuration,
and the 0 value that it is not.

Traditional FODA constraints can be specified on the
[0..1] domain as follows:

• F2 is a mandatory subfeature of F1 : F2 = F1;
• F2 is an optional subfeature of F1 : F2 <= F1;
• F1 requires F2 : F1 <= F2;
F1 excludes F2 can be specified as : F1 + F2 <= 1.

Another specification could be F1 * F2 = 0 (GNU Prolog
accepts non-linear constraints, however in some cases non-
linearity can penalize efficiency);

• Min-Max cardinality of a bundle of subfeatures
F1..Fk of a feature F: Min <= Σ1..k Fi, and Σ1..k Fi
<= Max.

In the VMC example, the Feedback, Visual, Audio, and
Vibration features are features that can only be either
included or not in a product configuration. Besides, at least
one, and at most 2 of these features can appear at the same
time in the same configuration. The constraints are thus the
following ones :

Visual <= Feedback,
Audio <= Feedback,
Vibration <= Feedback,
Visual + Audio + Vibration >= 1,
Visual + Audio + Vibration <= 2.
Constraint programming on the [0..1] domain permits to

specify other kinds of less usual kinds of constraints, such as:
• F1 + F2 > 0 : this is an equivalent to the logical

(inclusive) OR (as proposed by Mannion [3]): F1 or
F2 or both features can be included in a
configuration. In GNU Prolog we can simply write
F1 \/ F2.

• F1 + F2 = 1 : this constraint specifies a logical
(exclusive) XOR. It indicates that either F1 or F2,
but at least one of them, should be integrated in the

Figure 1. example of a simplistic vehicle movement control systems product line.

configuration. The XOR shall be distinguished from
FODA's 'excludes' according to which a
configuration can include none of the features.

• Σ1..k Fi > 0 : this allows to specify that at least one of
the Fi should be selected, ie equivalent to a min
cardinality constraint applied to a collection of
independent features.

• Σ1..k Fi =1 : this constraint specifies that only one of
a collection of features can be selected.

• Σ1..k Fi = 0 (alt < 1) : this constraint specifies that all
the features of a collection are excluded. This
constraint can be very useful in practice to impose
some extra-restriction at configure-time.

Back to the VMC example, let us assume that in addition
to the cardinality constraints, the visual and audio feedback
features are mutually exclusive: any configuration shall
include either the one or the other but at least one of them.
This XOR dependency can be specified with the constraint:

Visual + Audio = 1
It is interesting to notice that whereas constraints on pairs

of features could easily be represented graphically in a
FODA model, constraints programming allows to specify
constraints on collection of features that can be quite distant
from each other. Representing graphically such kind of
feature in a model would be difficult and rapidly entail
readability.

Another interesting aspect of these constraints is that they
could be rather straightforwardly be specified using boolean
constraint programming. Specifying constraints in FD
permits to specify other kinds of constraints that could more
difficultly be specified with boolean constraints. For
example:

• F1 > F2 : F2 is required and F1 excluded.
• F1 + F2 <= F3 : if F3 is included then either F1 or

F2 is included; otherwise all are excluded.
• F1 + F2 < F3 + F4 : more features from the {F3,

F4} set shall be included than from the {F1, F2} set.
This feature can, of course, be extended to larger
sets.

• 2 * F1 + F2 + F3 =2 : either F1 is included in the
configuration, or both F2 and F3. Interestingly, one
solution to specify this kind of constraint in FODA
would be to artificially creating a fourth feature that
represents F2 + F3. Of course the issue would then
be of the actual meaning of this feature, of the link
between F2 and F3 and their parent features, and of
the place of the F4 feature in the model, which
makes such a solution very unlikely.

B. Reasoning about the number of occurrences of features
In [Czanercki05], Czarnecki et al. introduce feature

cardinality as the number of times a feature can be repeated
in a product. This is useful to specify the number of times a
feature is included in a product, as in bill of materials used in
production, or to define a proportion, as defined in recipes in
different sectors of the process industry, such as
pharmaceutics, petro-chemistry, etc.

This can be modeled associating an FD variable F to a
feature whose initial domain is 0..N (N being the maximum

number of occurrences of F). Two constraints are obviously
needed :

• F1 > a : to indicate that feature F1 shall be included
at least one time in a configuration, and

• F1 = a : to specify the exact number of times a
feature can be included in a configuration.

• But more complex constraint can arise, for instance:
• at least one of two features should be included in a

product: F1 + F2 > 0
• at least one of a series of features should be included

in a product: Σ1..k Fi > 0
• there should be only one occurrence of two

multivalued features: F1 + F2 = 1
• the product should include no occurrence of a series

of features: Σ1..k Fi = 0 (alt < 1)
• the product should include more occurrences of a

feature than of another: F1 > F2
• the product should include more occurrences of a

feature F1 than of two other features (F2 and F3)
together: F1 + F2 <= F3; this is for example useful
to specify that the VMC products should include
more processors than sensors and actuators.

• the product should include more occurrences of a
pair of features (F3, F4) than of another pair of
features (F1, F2) together: F1 + F2 < F3 + F4; this
is, for instance, useful to specify that the number of
consistency check plus the number of response time
auto test sensors should be superior to the number of
memory check + the number of functionality checks
in actuators

• the number of occurrences of F1 should be the half
of the number of occurrences of F2: 2 * F1 =F2; this
can be used to specified that there should be two
functionality checks auto tests per speed sensor.

The specification of requires and excludes relationships
is a little different when applied to multi-occurrence features
than with [0..1] features. For instance, in the VMC example,
Vibration and Speed Sensor are mutually exclusive. This
exclusion can be specified by the constraint:

(SpeedSensor <> 0) <=> (Vibration = 0)
or more simply

(SpeedSensor > 0) XOR (Vibration > 0)
The VMC example also contains a requires dependency

from Consistency Check to Response Time Check. This can
be specified by the constraint:

ResponseTimeCheck <= ConsistencyCheck
However, another kind of “requires” dependency could

be specified to indicate that each instance of a feature
requires an instance of another feature. In the VMC example,
this would be the case if one actuator is required for each
sensor. The constrain is specified as

Actuator >= Sensor
If in addition, actuators are only needed in product to

control sensors, then the requires dependency is specified
with an even stricter constraint:

Actuator = Sensor
or if n additional sensors are needed for other purposes:

Actuator + n = Sensor

Another use of constraints on the [0..n] domain in PL is
to apply them to feature attributes, as proposed by
Bennavides [5] with attributes associated to {true, false}
features. In [13], we have demonstrated how to specify
constraints on attributes to reason on goal based product
configuration, to guide for example a cost/benefit analysis of
products during their configuration.

C. Reified constraints
In [12], Czarnecki et al. define a new feature modeling

language to account for staged configuration. The
fundamental of stage configuration is to enable constraints
that shall be associated to a configuration model, which shall
itself be considered as a PL model.

Staged configuration can be found useful when not all
constraints shall be verified at once, but enabled in a ordered
fashion. In general the reification of the constraint C into a
variable B of the [0..1] domain is achieved by a constraint:

C <=> B = 1
that establishes a correspondence between B and C as

follows: B = 1 iff C is true (thus B <> 1 (i.e. equal to 0) iff
C is false).

The constraints of a PL model that shall only be verified
at a stage of configuration identified must be reified.
Identifying stages of configuration can be done either using
an FD variable that represents time (the version number of
the configuration), or it can be conditioned by the inclusion
of a feature in the configuration. The following constraints
shall be specified in the latter case:

• F1 = 1 => B : whenever F1 is included, the
constraint C reified with the B variable should be
satisfied.

• F1 = 0 => B : whenever F1 is excluded, the
constraint C reified with B should be satisfied.

Of course, these constraints reification could also be
directly specified as:

F1 = 1 => C, and
F1 = 0 => C.

In the VMC example, it would for instance be possible to
generate PLM models from the PL model to specify sub
families of VMC. One interesting such kind of sub family is
this in which a position actuator is associated with each
position sensor. Another aspect of this sub-family is that it
can be managed only as soon as there is a central processor
with a 1024 Ko internal memory.

The constraint can be reified as follows :
(Processor = 1) ∧ (InternalMemory = 1024) => B

with
B <=> (Position_Sensor = Position_Actuator)

Reified constraint can also be used to specify constraint
over decision points, as in [9] as follows. Assuming that a
decision point D, specified using constraints C1..Cn, a
constraint C on D shall simply be expressed as:

C => D, where
D <=> C1 ∧ .. ∧ Cn

to indicate that whenever condition C is met (e.g. a
feature is included in a configuration: F>0), the constraints
associated with decision point D shall be satisfied.

D. Symbolic constraints
CP over FD supports the specification and analysis of

symbolic constraints, ie constraints that are checked on
collections of variables. Here are some symbolic constraints:

• Alldifferent(F1, .., Fk) : specifies that in any
configuration the value of each of the F1 to Fk
features should be different pairwise. This could be
specified by k (k-1) / 2 inequality constraints
between each par of feature.

• Atmost(n, F1..Fk, a) : specifies that at most n of the
F1 to Fk features are equal to a.

• Atleast(n, F1..Fk, a) : specifies that at least n of the
F1 to Fk features are equal to a.

• Exactly(n, F1..Fk, a) : specifies that exacltyt n of the
F1 to Fk features are equal to a.

• Relation(F1..Fk, {a1..ak}) – constraints the tuple of
Feature F1..Fk to be equal to at least one tuple in the
collection of tuples {a1..ak}. This allows to specify
extensively a predetermined collection of compatible
values for [0..n] features.

In the VMC example, symbolic constraints can be used
for instance to specify predefined combinations of the
number of Sensors, actuators and internal memory in
configurations:

Relation ([Sensor, Actuator, InternalMemory], [
 [1, 1, 32],
 [1, 2, 64],
 [2, 1, 64],

 [2, 2, 128],
 [3, 3, 512]

 [4, 4, 1024]])
Reified constraints could also be used to specify the

choosen,m (F1, … ,Fk) predicate proposed by [2] to indicate
that at most m and at least n of the F1...Fk {true, false}
constraints shall be included (true) in the configuration. The
specification can be done with two symbolic constraints :

Atleast (n, F1..Fk, 1),
Atmost(m, F1..Fk, 1)

The versatility of CP can also be used to specify these
constraints on {true, false} feature using two generalized
versions of the Σ1..k Fi > 0 constraint:

min <= Σ1..k Fi
Σ1..k Fi <= max

which indicates that at least min and at most max
features of the collection of Fi features shall be included in
the same configuration.

One can easily see that these constraints offer a power of
expression that go beyond the choice predicate. Indeed, they
can not only be used to specify the minimal and maximal
number of features to exclude, but also with [0...n] features
to specify the minimal and maximal number of features that
are instantiated a given number of times in the product.

IV. TOOL IMPLEMENTATION
Developing a constraint program that specifies a product

line model is quite straightforward. For example, the feature
model presented in Figure 1 augmented with some of the

constraints presented in section 3 can be specified with the
following program:

pl(L):-

L = [VMC, Sensor, Actuator, Processor,
Feedback, SpeedSensor, SensorAutoTest,
PositionSensor, PositionActuator,
ActuatorAutoTest, InternalMemory,
ConsistencyCheck, ResponseTimeCheck,
SensorFunctionalityCheck, Feedback,
MemoryCheck,
ActuatorFunctionalityCheck, Visual,
Audio, Vibration],

 fd_domain([VMC], 0, 1),
 fd_domain([Sensor, SpeedSensor,

PositionSensor, SensorAutoTest,
ConsistencyCheck, ResponseTimeCheck,
SensorFunctionalityCheck], 0, 4),

 fd_domain([Actuator, PositionActuator,
ActuatorAutoTest, MemoryCheck,
ActuatorFunctionalityCheck], 0, 100),

 fd_domain([Feedback, Visual, Audio,
Vibration], 0, 1),

 fd_domain([Processor], 0, 1),
 fd_domain([InternalMemory], [32, 64,

256, 512, 1024]),
 Sensor #> VMC,
 Actuator #> VMC,
 Processor #> VMC,
 PositionSensor #= Sensor,
 SpeedSensor #=< Sensor,
 SensorAutoTest #=< Sensor,
 SensorFunctionalityCheck #=

SensorAutoTest,
 ConsistencyCheck #=< SensorAutoTest,
 ResponseTime #=< SensorAutoTest,
 ResponseTime #=< ConsistencyCheck,
 Visual #=< Feedback,
 Audio #=< Feedback,
 Vibration #=< Feedback,
 Visual + Audio + Vibration #>= 1,
 Visual + Audio + Vibration #=< 2,
 PositionActuator #= Actuator,
 ActuatorAutoTest #=<Actuator,
 MemoryCheck #=< ActuatorAutoTest,
 ActuatorFunctionalityCheck #=

ActuatorAutoTest,
 SpeedSensor #\= 0 #<=> Vibration #= 0,

 fd_labeling(L). % To find one
solution

We developed an interactive tool that :
• offers a graphical editor [14] that supports the

drawing, loading and saving of PL models specified
with different languages (FORE, XMI, and textual
constraints); A screen dump of our tool interface is
shown in Figure 2;

• compiles the model and generates the associated
constraint program (as in the above example). This
program can be consulted and/or modified by the
user;

• allows the user to start a configuration process. This
includes the addition of extra-constraints (whose
lifetime is the configuration phase only), the addition
of some optimization criterion, the computation of a
solution, the interactive exploration of alternative
solutions,…

• supports multi-language PL modeling and analysis
tool [15].

A model validity checker is being implemented to
support the analysis of a series of structural and semantic
verification criteria [14]. So far, the verification function is
implemented using procedural programs, whereas in fact our
verification criteria were defined using first order logic., here
again the underlying Prolog system will help us.

V. FEASIBILITY STUDY WITH A REAL CASE STUDY
One particular question that can be raised about the new

kinds of constraints that have been identified in this paper is
“are they useful?”. Although only long term experience shall
provide a definitive answer to this question, one might be
interested in looking for special constraints that could be
specified in a real case.

To do so, we have used our CP over FD approach to
specify constraints on a family of blood analysis automatons.
We had the opportunity to model this PL using the FODA in
the context of a cooperation with the STAGO company [13].

Applying the derivation rules proposed at the beginning
of section 2.1 on the feature model shown in figure 2
generated about around 50 constraints on [0..1] features.

Of course, constraints that were associated to {true,
false} features were, as we propose it, declared with a [0..1]
domain to enable the addition of supplementary constraints.

Using FD constraints allowed us to specify the same
constraints as the one that we had identified to reason about
costs and revenue of each features. To do so, we associated
[0..n] attributes to each features to specify costs and
benefits. We, of course, had to define a fix value for n – we
chose to use the same maximum cost and revenue for all
feature for the purpose of the study.

For example, we specified constraints on the minimal
number of measurement wells depending on the required
tests and the required cadence for these tests.

Chronometric.NumberOfWells +
Colorimetric.NumberOf Wells +
Immunologic.NumberOfWells >=
max(LaunchTest.TestCadence) *
max(LaunchTest.TestDuration)

We could also specify that the initially optional function
‘Agitate’ must be implemented whenever one of the tests
TP, TT, Fib, VwF or DDi are included

(LaunchTest.TestType <> TCA) ∨ (LaunchTest.TestType
<> ATIII) ∨ ((LaunchTest.TestType <> PC) =>
Agitate = 1

Looking at our list of FD specific constraints, we
identified constraints that could not be specified before (ie
with {true, false} features), namely:

• constraints on both [0..n] features and feature
attributes. For example, we could play with the
number of chronometric, colorimetric and
immunologic measure dwells and specify a
constraint on the number of their occurrence

• Chronometric + Colorimetric + Immunologic >=
LauchTest.TestCadence * LauchTest.TestDuration

• symbolic constraints such as:
• Atmost (1, [Agitate, Mix, Incubate], 2]
• to specify that each activity in a methodology can be

repeated at most twice
• Another example of use of symbolic constraints was

to specify possible combinations of value of the
cadence, duration, and kind of determination for
different kinds of test types:

Relation ([LauchTest.TestType, LauchTest.TestDuration,
LauchTest.TestCadence, determination], [

[TP, 2, 14, simple],
[TP, 2, 14, double],
[TCA, 2, 14, simple],
[TT, 3, 2, double],
[Fib, 10, 5, double],
[ATIII, 15, 3, double],
[VwF, 13, 8, double],
[PC, 2, 6, simple],
[DDi, 6, 8, simple]])

• Last, we were able to specify reified constraints such
as

LaunchTest.TestType = TCA <=> C
C => Chronometric = 1 ∧ Chronometric.Speed = normal

which enforces the use chronometric measurement
technique when TCA test is demanded. It specifies also the
required speed for this test.

We also used feature attributes to support cost/benefit
analysis on measurement techniques. The following goals
could for instance be specified:

Min (Chronometric.Cost *
Chronometric.NumberOfWells + Colorimetric.Cost *

Figure 2. Extract of STAGO PL specification developed with our tool. Each view on the PL (FORE, XMI, textual constraints on features) can
be accessed by a specific tab. Details on the specifications are given in [13].

Colorimetric.NumberOfWells + Immunologic.Cost *
Immunologic.NumberOfWells), and

Max (Chronometric.Revenue *
Chronometric.NumberOfWells + Colorimetric.Revenue *
Colorimetric.NumberOfWells + Immunologic.Revenue *
Immunologic.NumberOfWells)

Our observations are also the following ones:
• Incremental development and maintenance of PL

models is made possible as long as models are
modified by adding constraints.

• GNU-Prolog computes very efficiently a first
complete solution w.r.t. the selected/excluded
features. In practice, this helped us in the
configuration process as it provided a general idea of
the product that was being built.

• GNU-Prolog computation of the next solution was
effective as it offered an alternative to the
configurations that had already been explored.
Iterating over this function allowed to review the
various solutions one by one – or to identify that the
variability space was still very open by counting the
number of remaining configurations that satisfied the
constraints for the requirements at hand.

These results are encouraging and confirm that CP over
FD is well suited to precisely model and efficiently configure
PL.

VI. RELATED WORKS
This paper is not the first to explore the use of constraint

programming in the context of PL. Some proposals had been
made to support automatic analysis of feature-based models
in order to allow retrieving information.

The greatest number of works to automate features
analysis is based on propositional logic. First-order logic is
used to check validity of feature models [16] [17] [18] but
also to reason about them [19] [2] [1]. Our approach belongs
to a family of approaches that relies on constraints
specification (in particular the integer domain) rather than on
{true, false} features. The simple fact of replacing the {true,
false} domain by [0..1] opens the door to kinds of constraints
that did not exist in the aforementioned approaches.

Czarnecki's proposals of staged configuration, valued
features, and feature attributes has created an opportunity to
move from boolean to integer constraints specification.
Benavides's works [5] and [13] have in particular shown
how PL could be analyzed by specifying integer constraints
on attributes associated with features. In Benavides's
approach, features themselves still have a {true, false}
domain.

Our approach goes a step further by exploring FD
Constraint Programming. For example, it shows how to deal
with [0..n] features, how to deal with staged configuration,
and it uses the versatility of constraint programming to
provide numerous types of constraints that were not
proposed in the approaches referenced before.

VII. PERSPECTIVE ON FUTURE WORKS
An important challenge for RE in PL development is

ensuring the consistency of requirements and product line
variability so as to allow configuring the right products. This
challenge is even more difficult to meet as, in practice,
requirements are mostly expressed using several languages
[20].

Indeed, it is widely recognized that the complexity of
current software development justifies the simultaneous use
of several models to specify and communicate various views
and aspects of a system with regards to the involved
stakeholders (executives, developers, distributors, marketing,
architects, testers, etc.). These models include requirements
stating the capabilities of the PL, but also other kinds of
requirements such as strategic goals, development
constraints and component reuse restrictions that are of most
interest when making decisions about product
configurations. In the other hand, an insufficient
consideration of all necessary views leads to a problem
understanding lack and so the failure of software projects.

Besides, the perception of variability often depends on
the organization and the area of expertise of the involved
stakeholders. It is not unusual that different delivered models
are expressed using heterogeneous variability notations
within a single project development. For example, analysts
may deliver a requirements model based on use cases
describing a high-level, user-oriented view on system
functionality; while architects may deliver a feature-based
model focusing on system structure and interaction from a
more technical, design-oriented point of view. In the absence
of a global view, and given the complexity of the
communication, it’s not surprising that requirements get
missed or misunderstood.

What is clearly needed in the future is a systematic way
to capture all the information given by the various
viewpoints and to organize it so that missing information is
more easily identified, the full impact of change is more
easily understood, and dependencies are explicitly discerned
so that configuration is facilitated. It would be beneficial as
well if the captured information could refer to the same
representation of variability so that models are better
construed and integrated.

In this regard, a constraint programming based approach
could easily be used for integrating PL models, then
verifying their consistency, and configuring product lines in
an integrated way, ie dealing with requirements from
different viewpoints and various kinds of variable artifacts at
the same time.

This paper only deals with constraint programming over
FD. The outcome of our approach is multiple: first,
constraints from different modeling languages can be
specified and reasoned about. Second, constraints from
different product line models can be integrated in a unique
program and solved in an integrated way -even when the
models are specified with different languages. Third,
constraints that to our knowledge could not be specified in
existing languages can be specified.

We explored constraint programming on finite domains,
but many other domains could be relevant : Reals, Intervals,
Rationals, Booleans, Rational Trees, Lists, Strings and Sets.
Constraint Programming is versatile in that it adapts quite
well to different applications. We have little doubt that the
systematic exploration of these domains will generate new
knowledge about product lines engineering.

VIII. REFERENCES
[1] A. van Deursen, P. Klint. Domain–specific language design requires

feature descriptions.
[2] D.S. Batory. Feature models, grammars, and propositional formulae.

9th International Software Product Lines Conference, pp. 7–20.
Springer, 2005.

[3] M. Mannion. Using First-Order Logic for Product Line Model
Validation. In Proceedings of the Second Software Product Line
Conference (SPLC2), LNCS 2379, pages 176–187. San Diego, CA,
2002. Springer.

[4] Codognet P. and Diaz D., “Simple and Efficient Consistency
Techniques for Boolean Solvers in Constraint Logic Programming”,
Journal of Automated Reasoning, Vol. 17, 1996.

[5] D. Benavides.On the Automated Analysis of Software Product Lines
Using Feature Models. A Framework for Developing Automated
Tool Support. University of Seville, Spain, PhD Dissertation, June
2007.

[6] K. Czarnecki, S. Helsen, and U. W. Eisenecker. Formalizing
cardinality-based feature models and their specialization. Software
Process: Improvement and Practice, 10(1):7– 29, 2005.

[7] D. Diaz and P. Codognet, “Design and Implementation of the GNU
Prolog System”. Journal of Functional and Logic Programming
(JFLP), Vol. 2001, No. 6, October 2001.

[8] O. Djebbi, C. Salinesi, and G. Fanmuy. Industry Survey of Product
Lines Management Tools: Requirements, Qualities and Open Issues,
International Conference on Requirement Engineering (RE), IEEE
Computer Society. India, 2007.

[9] S. Buhne, K. Lauenroth, K. Pohl. Modelling Requirements Variability
across Product Lines. Proc. Of 13th Int. Conf on Requirements
Engineering, pp41-50. France, 2005.

[10] D. Benavides, A. Ruiz-Cortes, P. Trinidad, S. Segura. A Survey on
the Automated Analyses of Feature Models. XV Jornadas de
Ingeneria del Software y Bases de Datos. Barcelona 2006.

[11] D. Dhungana, P. Gruenbacher, R. Rabiser. DecisionKing: A Flexible
and Extensible Tool for Integrated Variability Modeling. 1Rst Int.
Workshop on Variability Modelling of Software Intensive Systems,
pp120-128. Ireland 2007.

[12] K. Czarnecky, S. Helsen, U. Eisenecker. Staged Configuration Using
Feature Models. Proc of Software Product Line Conference. 2004.

[13] O. Djebbi, C. Salinesi. RED-PL, a Method for Deriving Product
Requirements from a Product Line Requirements Model.
International Conference on Advances in Information Systems
Engineering, CAISE’07. Norway, 2007.

[14] O. Djebbi, C. Salinesi, D. Diaz. Deriving Product Line Requirements:
the RED-PL Guidance Approach. Asian Pacific Software Eng.
Conference (APSEC), Japan, 2007.

[15] W. Zhang, H. Zhao, H. Mei. A propositional logic-based method for
verification of feature models. ICFEM’04, Springer–Verlag, pp 115–
130, 2004.

[16] Zhang W., Zhao H. and Mei H., “A propositional logic-based method
for verification of feature models”, ICFEM’04, Springer–Verlag, pp
115–130, 2004.

[17] A. Metzger, P. Heymans, K. Pohl, PY Schobbens, G. Saval.
Disambiguating the Documentation of Variability in Software
Product Lines: A Separation of Concerns, Formalization and
Automated Analysis. International Conference on Requirements
Engineering (RE 07), New Delhi, India, pp. 243-253, 2007.

[18] C. Salinesi, C. Rolland, R. Mazo. VMWare: Tool Support for
Automatic Verification of Structural and Semantic Correctness in
Product Line Models. Proceedings of the VAMOS Workshop, Spain,
2009.

[19] M. Mannion. Using First-Order Logic for Product Line Model
Validation. Proceedings of the Second Software Product Line
Conference, pp. 176–187, 2002.

[20] O. Djebbi, C. Salinesi. Criteria for Comparing Requirements
Variability Modeling Notations for Product Lines, CERE workshop,
pp 20 – 35. USA, 2006.

[21] C. Salinesi, R. Mazo, D. Diaz. Criteria for the verification of feature
models. INFORSID Conference. Mareseilles, France, 2010

[22] A. Lora-Michiels, C. Salinesi, R. Mazo: A Method Based on
Association Rules to Construct Product Line Models. VaMoS
worksho, p: 147-150, Linz, Austria, 2010.

[23] C. Salinesi, D. Diaz, O. Djebbi, R. Mazo, C. Rolland. Exploiting the
Versatility of Constraint Programming over Finite Domains to
Integrate Product Line Models. Poster at IEEE International
Conference on Requirements Engineering (RE), pp. 375-376, Atlanta,
USA, 2009.

