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ABSTRACT 

Method Engineering (ME) is a discipline which aims to bring effective solutions to the 

construction, improvement and modification of the methods used to develop Information 

Systems (IS). Situational Method Engineering (SME) promotes the idea of retrieving, adapting 

and tailoring components, rather than complete methodologies, to the specific context. Existing 

SME approaches use the notion of context for characterizing situations of IS development 

projects and for guiding the method components selection from a repository. However, in the 

reviewed literature, there is no proposed approach to specify the specific context of method 

components. This paper provides a detailed vision of context and a process for contextualizing 

methods in the IS domain. Our proposal is illustrated with three case studies: scenario 

conceptualization, project portfolio management and decision-making. 
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1. INTRODUCTION 

An IS development methodology (ISDM) is a set of ideas, approaches, techniques and tools 

which system analysts use to help them transforming organizational needs into an appropriate 

Information System. The application areas of these methodologies are various. Because of this 

diversity, it is now apparent that a universal method that could be applied to deal with any IS 

development project does not exist. Method engineering (ME) represents the effort to improve 

the usefulness of ISDM by creating an adaptation framework whereby methods are created to 

match specific organizational situations. ME aims to find solutions to the construction, 

improvement and modification of the methods used to develop information systems. One of the 

ME fundamentals for optimizing, reusing, and ensuring flexibility and adaptability of these 

methods is their decomposition into modular parts (Harmsen, Brinkkemper & Han Oei 1994) 

(Rolland 2005). This purpose is the object of Situational Method Engineering (SME) which 

promotes the idea of retrieving, adapting and tailoring components, rather than complete 

methodologies, to the specific context. 

Existing SME approaches consider the notion of context in order to guide the selection of a 

method component from a repository according to a given situation. They also deal with 

different kinds of context factors characterizing situations of IS development projects and offer 

various methodologies for using context. For instance, the method component context is studied 

in different approaches and is represented as: reuse frame (Mirbel 2008); interface (Ralyté & 

Rolland 2001b); method service context (Guzélian & Cauvet 2007); contingency factors (Van 

Slooten & Hodes 1996), (Harmsen 1997); development situation (Karlsson & Agerfalk 2004). 



These approaches foresee different context elements which are the characteristics of method 

components. 

However, the reviewed literature shows that, firstly, there is no approach considering all of 

the possible characteristics and, secondly, these approaches do not suggest a methodology 

allowing to define a set of concrete context characteristics for a given method. 

In our view, the context is a set of characteristics which describes situations of a method 

application. The context is defined for an IS development method and its components. Each 

method component is then described by concrete values of these characteristics. In this paper, we 

focus on the contextualization of method components. Our goal is to propose (i) a generic model 

of context based on the state-of-the-art and (ii) an IS development methods contextualization 

process. We introduce the frame of contextualization, we present the context model, the context 

typology and the process to construct the context characteristics set for a given method. We 

illustrate our proposal with three case studies: scenario conceptualization, project portfolio 

management and decision-making. 

All processes in this work are formalized with the MAP model which is commonly used in 

the ME field (Rolland, Prakah & Benjamen 1999). In our proposal, this formalism is used to 

represent the contextualization process in an intentional way. In the case studies, it is used to 

represent the organization of the method components (the links between them).  

The paper is organized as follows. The notion of method component is described in the 

second section. Third section surveys a state-of-the-art on the notion of context. The fourth 

section proposes a context model and a process for the contextualization of method components. 

We illustrate our proposal with examples in the fifth section. Related works are given in the sixth 

section. A conclusion and future works are given in the last section.  

 

2. CONTEXT AND ITS APPLICATION IN METHOD ENGINEERING 

 

2.1. Cross domains application of Context-awareness 

(Bouquet, Ghidini, Giunchiglia & Blanzieri 2003) states that the study of context was started in 

the 70’s. Since then, many different domains in relation with information systems use the notion 

of context and give various interpretations of it. For instance, (Dey, Abowd & Salber 2001) 

defines the notion of context by the information that could be used for characterizing the 

situation of an entity (person, object or computer), and, more generally, by any element that can 

influence the IS behavior. (Rey & Coutaz 2002) foresees the context from four points of view: 

• The context must be defined in terms of an object. It means that “there is no context 

without context”. 

• The capture of context is not the goal in itself but the captured data must serve a 

purpose. 

• The context is an information space shared by multiple actors (users and systems). 

• The context is infinite and varies with the passing of time. 

Context models are multidisciplinary and have been proposed in several areas (Bradley & 

Dunlop 2005). The linguistic research is concerned with analyzing the usage context of signs (or 

words) within a language. Bunt (Bunt 1997) defines five types of context for communication 

aspects which are respectively: 

• Linguistic: refers to linguistic material; 

• Semantic: refers to domain description including objects and properties; 



• Physical: refers to the environment description in which action or interaction occurs; 

• Social: refers to the interactive situation which occurs between actors; 

• Cognitive: refers to the participants’ intentions, their evolution relating to perception, 

production, evaluation and execution. 

Context is also formalized using mathematical models. For instance, (Coutaz & Rey 2002) 

proposes a cumulative model where the context (Ctx) is a timely aggregation of situations. A 

situation is a state descriptor for a user (U) performing a task (T) at a specific time (t). The model 

is depicted by the following formula: 

 

Related to the Information technologies field, the context is represented as a model or an 

ontology. For instance, (Gu, Wang, Pung & Zhang, 2004) suggests a more detailed vision of 

context. It describes a formal context model based on ontology for intelligent environments. This 

context ontology defines a vocabulary for representing knowledge about context in this field. It 

includes two levels: upper ontology (capturing general context knowledge) and domain-specific 

ontologies (detailing basic concepts in application to a given domain). (Gu, Wang, Pung & 

Zhang, 2004) also specifies a way for modeling context classification, dependency between 

context elements, and quality of context. 

In the field of Knowledge Representation and Reasoning (KRR), which is an area of Artificial 

Intelligence, two types of the context theory have been proposed: (i) divide-and-conquer, which 

sees context as a way of partitioning a global model of the world into smaller and simpler pieces 

and (ii) compose-and-conquer, which sees context as a local theory of the world in a network of 

relations with other local theories (Bouquet, Ghidini, Giunchiglia & Blanzieri 2003). 

Another term, closely related to the context one, is context-awareness. Context awareness is a 

term originating from pervasive computing, or ubiquitous computing (Schilit, Adams & Want 

1994). These systems deal with linking changes in the environment with computer systems, 

which are otherwise static. Although it is a computer science term, it has also been applied to 

business theory in relation to business process management issues (Rosemann & Recker 2006).  

There are numerous context-awareness applications when human interactions occur. More 

related to our study, context models are also proposed for business process reengineering 

(Bessai, Claudepierre, Saidani & Nurcan 2008), computer science (Bradley & Dunlop 2005), 

service selection (Kirsch Pinheiro, Vanrompay & Berbers 2008) and decision-making within a 

military situation (Rosen, Fiore, Salas, Letsky & Warner 2008), (Drury & Scott 2008). In latter 

cases, the context model is seen as a way to analyze a given situation to guide the way of 

processing. Thus, context models are mainly used to solve the problem of lacking flexibility and 

adaptability within processes. 

 

2.2. Method Engineering and Method Components 

Method Engineering is a discipline which aims to bring effective solutions to the construction, 

improvement and modification of the methods used to develop information and software 

systems. Several authors tried to design methods that would be as effective and as adapted as 

possible to the development needs of information systems (Firesmith & Henderson-Sellers 2001) 

(Rolland & Cauvet 1992). This goal was not always reached, especially because the methods 

were not always well adapted to projects specificities. The situational methods were designed to 

correct this weakness. The situational approach finds its justification in the practical field 



analysis which shows that a method is never followed literally (Ralyte 2001) (Mirbel & de 

Rivieres 2002). Situational Method Engineering promotes the idea of using components, instead 

of complete methodologies, to specific situations (Ralyté & Rolland 2001a). In order to succeed 

in creating good methodologies that best suit given situations, components (building blocks of 

methodologies) representation and cataloguing are very important activities. In particular, the 

components have to be represented in a uniform way that includes all the necessary information 

that may influence their retrieval and assembling. 

The notion of method component is central of SME as it promotes the idea of retrieving, 

adapting and tailoring modular parts, rather than complete methodologies, to specific situations. 

There are various representations of modular parts: fragments (Brinkkemper 1996), chunks 

(Rolland, Plihon & Ralyté 1998), components (Wistrand & Karlsson 2004), OPF fragments 

(Henderson-Sellers 2002) and method services (Deneckère, Iacovelli, Kornyshova & Souveyet 

2008) (Guzélian & Cauvet 2007) (Iacovelli, Souveyet & Rolland 2008). 

Method fragment approach (Brinkkemper 1996). Fragments are standardized building 

blocks based on a coherent part of method. A fragment is either a Product or a Process fragment 

and is stored on a method base from which they can be retrieved to construct a new method 

following assembly rules (Bunt 1997). The method component definition consists in encouraging 

a global analysis of the project while basing itself on contingency criteria. Projects and situations 

are characterized by means of factors associated with the methods. 

Method chunk approach (Ralyté, Deneckère & Rolland 2003). A chunk is described as a 

way to capture more of the situational aspects in ME and to appropriately support the retrieval 

process. A chunk based method aims at associating the reusable components to their description 

in order to facilitate component research and extraction according to the user's needs. The chunk 

approach expresses projects requirements (the context) as a requirements map, which is used to 

test the similarity between requirements and existing components. 

Method component (Wistrand & Karlsson 2004). Components allow viewing methods as 

constituted by exchangeable and reusable components. Each component consists of descriptions 

for process (rules and recommendations), notations (semantic, syntactic and symbolic rules for 

documentation), and concepts. This approach introduces the notion of method rationale which is 

the systematic treatment of the arguments and reasons behind a particular method. In the same 

way, the component description contains its rationale. Its matching with the context is performed 

by goal analysis. 

OPF fragment (Henderson-Sellers 2002). In the OPEN Process Framework (OPF), the 

fragment is generated from an element in a prescribed underpinning meta-model. This meta-

model has been upgraded with the availability of the international standard ISO/IEC 24744. 

Method service (Guzélian & Cauvet 2007). This approach offers a repository with a large 

variety of method fragments, called method services, together with a service composition 

process. During composition, the process guides developer’s choices; it selects method services 

and delivers a method fragment that achieves developer’s requirements. The SO2M meta-model 

is based on three main principles: service orientation, task ontology for reuse of knowledge on 

development problems and dynamic construction of method services for generating tailored 

methods. The method service approach uses an identification part that defines the purpose of the 

service. The component retrieval is thus done by using goal, actor, process, and product 

ontologies. 

(Deneckère, Iacovelli, Kornyshova & Souveyet 2008) structures the process of SME 

according to three steps of manipulating method components: 



(a) the decomposition of methods into components which are stored in a method repository,  

(b) the retrieval of components that better match the project specificities and  

(c) the construction of a new method with these selected components.  

According to these steps, different method components could be compared according to the 

four following criteria: decomposition principle, retrieval/selection principle, matching with 

situation, and construction technique (See Table 1). 

First, the methods are decomposed into methods components which are stored in method base 

(or repository). Thus, we define the criterion “decomposition principle” which deals with 

different ways to decompose methods into components. This principle predefines the 

components’ description used for their identification during project fulfilment. 

Once the methods are decomposed and stored in the base, they could be used in the projects. 

On the first step, the engineer must find in the method base the components that better match the 

project specificities. On this basis, we identify two criteria: retrieval/selection principle and 

matching with situation. The retrieval/selection principle defines steps to carry out for 

identifying an appropriate component. In ME, all approaches are situational, which means they 

take into account the specific project situation by different manners. This aspect is considered 

within the matching with situation attribute. 

The next step is to build a new method from the selected components. Based on (Nehan & 

Deneckère 2007), we distinguish the following main manners to use components for 

constructing a new method according to project specificities: assembly, extension, and reduction. 

By assembly, separate fragments are grouped with regard to the studied specific project to form a 

unique method (Ralyté, Deneckere & Rolland 2003). By applying extension, a basic method is 

transformed into a new one by addition of new components (Ralyté, Deneckere & Rolland 

2003). By reduction, some components are removed from the basic method in order to transform 

it to match the engineer's needs (Wistrand & Karlsson 2004). 

 

Table 1. Method Components Comparison. 

 

Criteria Fragment Chunk Component OPF Fragment Method Service 

Decomposition 

principle 

 by intentions by goal inheritance, 

instantiation 

Not specified 

Retrieval/selecti

on principle 

Request similarity 

measure 

request by goal request by goal semantic similarity 

Matching with 

situation 

project 

characterisati

on 

requirements 

map 

 by goal and 

actor 

by goal, actor, process, 

and product ontologies 

Construction 

technique 

assembly assembly, 

extension 

assembly, 

extension, 

reduction 

agile assembly without 

overlapping 

 

Decomposition Principle. The decomposition principle is quite different following the 

component type. Method fragment uses a tree decomposition to link all coherent method parts. 

Chunks are obtained by intentional decomposition of methods (Ralyté, Deneckere & Rolland 

2003). The OPF fragment is a clabject, which is a result of both instantiation and inheritance 

(Gonzales-Perez 2007). Components are decomposed by goals (Wistrand & Karlsson 2004). The 

method service approach does not specify this attribute value. 



Retrieval/Selection Principle. The retrieval and selection of a method fragment are made by 

different types of queries. Chunks are selected with the application of similarity measures of 

their descriptors and interfaces. This helps to evaluate the degree of matching between them and 

the requirements (Ralyté, Deneckere & Rolland 2003). On the same way, the method service 

selection is made by a comparison of the requirements (expressed by intentions) with the service 

intentional descriptors by ontologies, which allow comparing the semantic similarity (Guzélian 

& Cauvet 2007). Differently, OPF fragments, stored on a ‘work product tool’, are selected with 

queries on their endeavour (Gonzales-Perez 2007). Method fragments are selected by application 

of request on the goal (Harmsen, Brinkkemper & Oei 1994). 

Matching with situation. Approaches don’t match the situation with the same techniques. 

The method fragment definition consists in encouraging a global analysis of the project while 

basing itself on contingency criteria. Projects and situations are characterized by means of factors 

associated with the methods. The chunk approach includes projects requirements expressed as a 

requirements map (Ralyté, Deneckere & Rolland 2003), which is used to test the similarity 

between requirements and existing fragments. In component containing its "rational", the 

matching is performed by goal analysis (Wistrand & Karlsson 2004). The Method service 

approach uses an identification part that defines the purpose of the service. The matching is thus 

done by using goal, actor, process, and product ontologies (Guzélian & Cauvet 2007). 

Construction technique. The method fragments are assembled for creating a new method. 

The chunk approach uses assembly (allowing overlapping between different chunks) and 

extension. In addition to the assembling and extending, the component approach suggests 

method reduction. The method service construction is based on a composition process that 

supports the aggregation of services in sequence or in parallel (Guzélian & Cauvet 2007). In the 

OPF approach, a new method is constructed by dynamic instantiation of fragments during the 

project. Hence, the OPF approach suggests an agile construction of methods. 

A more detailed comparison of these different kinds of modular parts may be found in 

(Deneckère, Iacovelli, Kornyshova & Souveyet 2008). 

 

Figure 1. Method Component Meta-model. 

 

Our view of a component has been described in (Deneckère, Iacovelli, Kornyshova & 

Souveyet 2008). We based our method component on the method chunk for its intrinsic 

intentionality as we decompose the methods into method components according to an intentional 

MethodComponent

ID

name

*

ProcessPartProductPart

SourceProductPart TargetProductPart

Intention



principle. This part will then be used for retrieving and selecting method components from the 

method base. We suggest modelling method components as shown at Fig. 1. 

Method components are expressed at different granularity, at various levels of abstraction. For 

instance, a component may be an entire method that can be decomposed into other less complex 

components (which, in turn, may also be decomposed into other more simple components, and 

so on). They are a representation of the components composition. 

The intention describes the general purpose of the component. The product part corresponds 

to the description of the component input and output product models. The source product part 

defines the product required for applying the component. The target product part defines the 

result, which must be obtained by the component application. The process part contains 

guidelines which explain how to apply the component in order to obtain the product part. 

For instance, a method component Weighting is given at Fig. 2. for illustrating this model. 

This component is part of decision-making methods. It allows defining weights to criteria in a 

given decision-making situation. The Weighting component is described by its ID ant its name. 

Its intention is to Define relative importance of criteria. The source product part is composed of 

criteria organized into a set. The target product part includes also a weight class. The process part 

describes the main steps to follow for defining weights, namely: scale criteria according to their 

importance, attribute values from 1 to 100 to each criterion, and calculate relative importance. 

Finally, it shows how to create the corresponding class if necessary. 

 

 

 

Figure 2. Decision-making Method Component Weighting. 
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2.3. Method Components Context 

Based on the study of different SME approaches dealing with method components, we have 

identified five main approaches dealing with context in the method engineering field. 

 

Reuse frame. The reuse frame (Mirbel 2008) is a framework representing different factors 

which affect IS development projects. These factors are called criteria. Reuse frame allows 

specifying a context of method fragments reuse, searching method fragments and comparing 

between them in order to find an alternative fragment to a used one. The reuse frame model 

includes a reuse situation (which is a set of criteria classified into three dimensions: 

organizational, technique and human) and reuse intention. 

 

Interface. In (Ralyté & Rolland 2001b) the method fragment context is defined by its 

interface which includes a situation and an intention. The situation represents the conditions in 

which the method fragment can be applied in terms of required inputs product(s). The intention 

is a goal that the method fragment helps to achieve. Therefore, the interface model includes two 

elements: the situation and the intention. These two first approaches have been unified in (Mirbel 

& Ralyté 2006). 

 

Method service context. The method service context (Guzélian & Cauvet 2007) aims at 

describing the situation in project development for which the method service is suitable and 

defining the purpose of the service. Its model includes domain characteristics (project nature, 

project domain) and human (actor), process and product ontologies. 

 

Contingency factors. Situations (the context) are described by a set of characteristics called 

contingency factors (Van Slooten & Hodes 1996) or project factors (Harmsen 1997; Harmsen, 

Brinkkemper & Oei 1994). These factors are used to define the project situation by assigning 

values to them. In (Van Slooten & Hodes 1996), four categories are given: domain 

characteristics (describing the content of the system), external factors (laws and norms), 

technical factors (related to the development platform) and human factors (representing the 

development expertise of people). 

 

Development situation. (Karlsson & Agerfalk 2004) defines the development situation as an 

abstraction of one or more existing/future software development projects with common 

characteristics. This situation is used to characterize the specific projects and to select 

configuration packages (method fragments). The development situation model includes a 

characteristics set. 

 

Based on the review of these five approaches, we have identified height characteristics 

(context elements) which allow us to compare existing context approaches (See Table 2). This 

comparison highlights that there is no approach which consider all possible characteristics. 

Moreover, the analysis of these context approaches shows that they do not suggest a way to 

specify context characteristics. For instance, the context of the DM method component illustrated 

at Fig. 2 must be defined in order to state in what kind of situation this component is useful. 

However, the existing literature does not provide means for defining its context. 

 



Table 2. Comparative analysis of approaches dealing with context in ME field: context elements. 

 

Approach 

Characteristics 

Goal/ 

Intention 

Organiza-

tional 
Technical Human Domain External Process Product 

Reuse Frame X X X X     

Interface X       X 

Method service 

context 
   X X  X X 

Contingency 

factors 
  X X X X   

Development 

situation 
Not specified 

 

3. CONTEXTUALIZATION OF METHOD COMPONENTS 

3.1. Our proposal 

In SME, all approaches are situational, which means they take into account the specific project 

situation (or Context). However, the definition or description of this context is often just 

superficially addressed.  

Our proposal uses the context expressiveness to describe the situation in which a component 

may be applied. It is then based on the semantic type of context previously presented. Moreover, 

our view of a component includes an intention oriented approach which allows representing the 

cognitive aspect of the context.  

The preceding comparative analysis of context approaches shows that they address several 

aspects of context. However, they do not cover all of them and do not help in the context 

characteristics specification. Our goal is to enhance the definition of the context of IS 

development method for the further selection of components from a repository according to a 

given situation. In the following we present our vision of context and a process to define the 

context for a given method. 

 

3.2. Enhanced definition of method context 

We propose to consider the context granularity at two levels: the method and method 

component ones (See Fig. 3. for the proposal overview). Each method is available in a given 

context. As a method is composed of some components, each of them can be also described by 

specifying its context. Therefore, the method context is an aggregation of contexts associated to 

its components. 

 

Figure 3. Proposal Overview. 
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In our proposal, we describe the context as a set of characteristics. These characteristics 

describe situations of a method application. The detailed context model is presented at Fig. 4. 

 

 

 

Figure 4. Context Model. 

 

The central element of this model is characteristic. A set of characteristics constitute the 

context. Context characteristics indicate specific conditions to use the component. 

Characteristics are organized into facets for better representation and comprehension. We 

distinguish two types of characteristics (and consequently two types of facets): generic and 

specific. The first ones are common for most IS engineering projects; the latter ones vary from 

one project to another. To distinguish between them is important because of their different 

identification approaches. The context characteristics set is defined for a method component. 

Therefore, each method component is described by the valuations of these characteristics (value). 

In the following, we describe different context characteristics by facets. 

Generic characteristics. In order to establish the typology of generic characteristics we have 

used IS development project characteristics (Kornyshova, Deneckère & Salinesi 2007). In this 

work, a project characteristics typology is proposed in order to guide method components 

retrieval and to prioritize the selected components. 

The suggested typology of context characteristics covers essential aspects of IS engineering 

projects. Based on (Mirbel & Ralyté 2006), (Van slooten & Hodes 1996) and (Kornyshova, 

Deneckère & Salinesi 2007), it includes four facets: organizational, human, application domain, 

and development strategy.  

The organizational facet (Table 3) highlights organizational aspects of IS project 

development. For instance, the Management Commitment characteristic represents the 

management team involvement in the project. Possible values for this characteristic are Low, 

Normal and High (i.e. a High value means a high involvement and so on). 

 

MethodComponent

ID

name

*

FacetCharacteristic *

Value Context

Generic

*

Specific

Organizational

Human
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DevelopmentStrategy

Intentional

Satisfactional

Decisional

Internal



Table 3. Organizational Facet Characteristics. 

 
Characterisitc Type Value domain 

Management commitment degree Quantative 3-grade scale 

Qualitative ENUM:{low, normal, high} 

Importance degree Quantative 3-grade scale 

Qualitative ENUM:{low, normal, high} 

Impact degree Quantative 3-grade scale 

Qualitative ENUM:{low, normal, high} 

Time pressure degree Quantative 3-grade scale 

Qualitative ENUM:{low, normal, high} 

Shortage of resources degree Quantative 3-grade scale 

Qualitative ENUM:{low, normal, high} 

Level of innovation degree Quantative 3-grade scale 

Qualitative ENUM:{low, normal, high} 

Size Quantative 3-grade scale 

Qualitative ENUM:{low, normal, high} 

Cost Quantative REAL 

Qualitative ENUM:{low, normal, high} 

Nature of limited resources Qualitative ENUM:{financial, human, temporal, informational } 

Innovation nature Qualitative ENUM:{business innovation, technology innovation} 

Duration Quantative REAL 

 

The human facet (Table 4) describes the qualities of persons involved in IS project 

development. For example, the User involvement characteristic represents the kind of 

participation of the users in the project. Its values may be real or virtual. 

 

Table 4. Human Facet Characteristics. 

 
Characterisitc Type Value domain 

Resistance degree Quantative 3-grade scale 

Qualitative ENUM:{low, normal, high} 

Conflict degree Quantative 3-grade scale 

Qualitative ENUM:{low, normal, high} 

Expertise degree Quantative 3-grade scale 

Qualitative ENUM:{low, normal, high} 

Clarity degree Quantative 3-grade scale 

Qualitative ENUM:{low, normal, high} 

Stability degree Quantative 3-grade scale 

Qualitative ENUM:{low, normal, high} 

Expert role Qualitative ENUM:{tester, developer, designer, analyst} 

User involvement Qualitative ENUM:{real, virtual} 

Stakeholder number Quantative NUMBER 

 

The application domain facet (Table 5) includes indicators characterizing the domain of IS 

project. For instance, the Application type characteristic deals with the different kinds of projects 

according to the organization structure and can have the following values: intra-organization 

application, inter-organization application, organization-customer application. 



 

Table 5. Application Domain Facet Characteristics. 

 
Characterisitc Type Value domain 

Formality degree Quantative 3-grade scale 

Qualitative ENUM:{low, normal, high} 

Relationships degree Quantative 3-grade scale 

Qualitative ENUM:{low, normal, high} 

Dependency degree Quantative 3-grade scale 

Qualitative ENUM:{low, normal, high} 

Complexity degree Quantative 3-grade scale 

Qualitative ENUM:{low, normal, high} 

Repetitiveness degree Quantative 3-grade scale 

Qualitative ENUM:{low, normal, high} 

Variability degree Quantative 3-grade scale 

Qualitative ENUM:{low, normal, high} 

Application type Qualitative ENUM:{intra-organization, inter-organization, 

organization-customer } 

Application technology Qualitative ENUM:{application to develop includes a database, 

application to develop is distributed, application to 

develop includes a GUI} 

Dividing project Qualitative ENUM:{one single system, establishing system-oriented 

subprojects, establishing process-oriented subprojects, 

establishing hybrid subprojects} 

Variable artefacts Qualitative ENUM:{organisational, human, application domain, and 

development strategy} 

 

The development strategy facet (Table 6) gathers indicators about different characteristics of 

development strategy. For instance, the Source system characteristic represents the origin of the 

reused elements that may be code, functional domain or interface. 

 

Table 6. Development Strategy Facet Characteristics. 

 
Characterisitc Type Value domain 

Source system Qualitative ENUM:{code reuse, functional domain reuse, interface 

reuse} 

Project organization Qualitative ENUM:{standard, adapted} 

Development strategy Qualitative ENUM:{outsourcing, iterative, prototyping, phase-wise, 

tile-wise} 

Realization strategy Qualitative ENUM:{at once, incremental, concurrent, overlapping} 

Delivery strategy Qualitative ENUM:{at once, incremental, evolutionary} 

Tracing project Qualitative ENUM:{weak, strong} 

Goal number Quantative NUMBER 

 Qualitative ENUM:{one goal, multi-goals} 

 

Specific characteristics. Their identification is based on the method description. The method 

engineer defines them by analyzing different aspects which are organized into four facets: 

intentional, satisfaction, decisional and internal, like in (Harmsen 1997).  



The intentional facet concerns the method intentions. The satisfaction facet indicates the 

satisfaction degree that the engineer has about the method application results. The decisional 

facet arises from a decision-making process in the method. The internal facet concerns the 

known criteria associated with the specific project management. For the specific map 

characteristics see Table 7. 

 

Table 7. Specific Map Characteristics. 

 
Characterisitc Type Value domain 

Goal satisfaction degree Quantative 3-grade scale. 

Qualitative ENUM:{low, normal, high} 

Goal achievement degree Quantative 3-grade scale  

Qualitative ENUM:{low, normal, high} 

Section satisfaction degree Quantative 3-grade scale  

Qualitative ENUM:{low, normal, high} 

Section completeness degree Quantative 3-grade scale  

Qualitative ENUM:{low, normal, high} 

 

Table 8 shows the correspondence between the proposed typology and the existing context 

elements (analyzed in the previous section). We can make some remarks to compare them: 

• Our typology covers all existing elements. 

• We propose to identify more precisely process and product characteristics using our 

approach instead of using product and process as context characteristics directly. 

• We add decisional characteristics which are not presented in the existing typologies. 

 

Table 8. Correspondence between the proposed typology and existing context elements. 

 

Proposed Typology Context Elements (cf. Table 2) 

Organizational Organizational 

Human Human 

Application domain Domain 

Development strategy Technical 

Intentional Goal/ Intention 

Satisfaction External, Process, Product 

Decisional Process, Product 

Internal Technical, Process, Product 

 

Our typology indicates the main characteristics that can be defined in function of a given 

situation.  It can be completed if new characteristics arise. Fig. 5 illustrates the obtained 

characteristics typology as an ontology, like in (Gu, Wang, Pung & Zhang, 2004).  



 

 

Figure 5. Characteristics ontology. 

 

3.3. Contextualization methodology 

In order to define the context for a given method and its components, we propose an approach 

based on the contextualization process modeled with the MAP formalism. 

 

3.3.1. Map Formalism 

A MAP illustrates a given process of IS engineering. The MAP model (Rolland, Prakash & 

Benjamen 1999) is a representation of process models expressed in intentional terms. It allows 

specifying process models in a flexible way by focusing on the process intentions, and on the 

various ways to achieve each of these intentions. 

The meta-model of MAP (Rolland & Prakash 2001) is represented as a UML class diagram 

(See Fig. 6). 

 
Figure 6. Map Meta-model. 
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A Map is a combination of at least two sections. Each Map has a code and a description which 

allow identifying it. The Map code depends on the Map position according to the refinement 

levels. The Map description gives a main purpose of the Map, or in other words, its main 

intention. 

The Map model enables to represent non-deterministic sequences of activities. It is expressed 

through the combination of different intentions and strategies used for achieving these intentions. 

Actually, an engineer has several intentions or goals that he(she) wants to achieve. Furthermore, 

there are several ways of achieving these intentions. The Map model allows considering 

intentions and strategies in ISE processes in order to perform them in a flexible manner. 

An Intention is a goal that can be achieved by the performance of an activity. Each map has 

two special intentions, Start and Stop, to begin and to end the map respectively (Rolland & 

Prakash 2001). (Prat 1997) suggest a model to describe the intention in details. This model has 

already been applied to the method engineering field in order to represent the intention of the 

method chunks (Ralyte 2001). Following this model, the intention is expressed in natural 

language and is composed of a verb and at least one parameter. Each parameter has a particular 

role with regard to the verb. An example is the Identify DM Requirements intention. The detailed 

description of the intention elements could be found in (Prat 1997) (Ralyte 2001). 

A Strategy is an approach, a manner to achieve an intention (Rolland & Prakash 2001). Each 

strategy relates two intentions. The strategy concept allows, firstly, separating the goal and the 

manner to achieve this goal and, secondly, expressing alternative approaches for the goals 

achievement. An example is the By problem exploring strategy. 

A Section is the main element of the Map model. It represents a combination of two intentions 

and a strategy relating these intentions. In other words, a section encapsulates knowledge about an 

activity in a triplet <Source intention; Strategy; Target intention>, in other terms, knowledge 

corresponding to a particular process step to achieve an intention (the target intention) from a 

specific situation (the source intention) following a particular technique (the strategy). A section 

is characterized by a code and a description. The Sections code depends on its position on the 

Map. The Section description embodies the triplet <Source intention; Strategy; Target intention>. 

An example can be mentioned: <Start; By problem exploring; Identify DM Requirements>. 

A section of a map can be refined by another map. This is shown through the refinement 

relationship between the section and the map. Refinement is an abstraction mechanism by which a 

complex assembly of sections at level i+1 is viewed as a unique section at level i. This 

relationship introduces levels in the process representation as each map may be represented as a 

hierarchy of maps. 

Sections in a map are related to each other by three kinds of relationships namely thread, path 

and bundle. 

• A thread relationship shows the possibility for a target intention to be achieved in several 

ways from the same source intention. Each of these ways is expressed as a section in the 

map. 

• A path relationship establishes a precedence relationship between sections. For a section 

to succeed another, its source intention must be the target intention of the preceding one. 

• A bundle relationship shows the possibility for several sections having the same source 

and target intentions to be mutually exclusive. 

A Map is graphically presented as a directed diagram, where intentions are nodes and 

strategies are edges, and each section corresponds to two nodes related to each other by an edge 

(See Fig. 7). The directed nature of this diagram shows the precedence links between intentions. 



An edge enters a node if its associated strategy can be used to achieve the target intention (the 

given node). 

 

 
 

Figure 7. Map Model Graphical Representation. 

 

An example of a map is given at Fig. 8. 

 

 
 

Figure 8. Map Example. 

 

This map contains three intentions, namely: Start, Identify DM Requirement, and Stop. There 

are four strategies: By problem exploring, By variability exploring, Tool-based strategy, and By 

expertise which correspond to the four sections: 

• <Start; By problem exploring; Identify DM Requirements>; 

• <Start; By variability exploring; Identify DM Requirements>; 

• <Identify DM Requirements; Tool-based strategy; Stop>; 

• <Identify DM Requirements; By expertise; Stop>. 

Each map is completed by a set of guidelines that help engineers in navigating through the 

map. There are three types of guidelines: simple, tactical and strategic. A simple guideline may 

give informal content advice on how to proceed in handling the situation in a narrative form. A 

tactical guideline is a complex guideline, which uses a tree structure to link its sub-guidelines. A 

strategic guideline is a complex guideline which shows that a section of a map can be refined by 

another map. This relationship implies that each map may be represented as a hierarchy of maps. 

The MAP model defines the process through the combination of observable situations in 

which a certain number of specific intentions can be achieved. The work to be made is described 

in the process as depending on both situation and intention. In other words, it depends on the 

context in which a method engineer must act at a given point in time. By modelling intentions 

and the ways (strategies) to reach them, the process has the ability to represent the cognitive 
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context as defined by Bunt. Moreover, by relating method service (Rolland 2008) (or method 

component (Ralyté, Deneckère & Rolland 2003)) to a section, Rolland extends the context 

expressiveness of the MAP to the semantic context of Bunt. This approach allows identifying 

several context aspects. More precisely, this model includes a set of guidelines which help an 

engineer navigate through the process model. The navigation is carried out by arguments that 

allow the engineer to choose the adapted variant within the process model. These arguments 

express the context of a given process model. 

 

3.3.2. Contextualization Map 

The Map model is used in our approach for modeling the contextualization process (See Fig. 9). 

This process includes two possible ways to define the context: top-down or bottom-up. By the 

top-down approach, the engineer defines the method context and then instantiate it for each 

method component. By the bottom-up approach, the engineer specifies the contexts of all method 

components and assemblies them into the method context. 

Both method and method component contexts can be defined following two strategies: By 

deduction and By generation. It depends on the characteristic type. The generic characteristics 

are deduced from the generic context typology and the specific ones are generated from method 

description. These strategies could be applied as many times as possible characteristics exist. 

 

 

 

Figure 9. Contextualization Map. 

 

This MAP has two main intentions: Define method context and Define method component 

context. The achievement of these intentions implies the definition of the context characteristics 

set for method or for method components respectively. The definition of method components 

contexts includes also the attribution of values to the defined characteristics. 

The contextualization Map includes eight sections, as shown in Table 9. 
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Table 9. Contextualization Map Sections. 

 

Section <Source intention, Strategy, Target intention > 

S1 <Start, By deduction, Define method context> 

S2 <Start, By deduction, Define method component context> 

S3 <Start, By generation, Define method context> 

S4 <Start, By generation, Define method component context> 

S5 <Define method context, By instantiation, Define method component context> 

S6 <Define method component context, By assembly, Define method context> 

S7 <Define method context, By completeness, Stop> 

S8 <Define method component context, By completeness, Stop> 

 

All these sections are explained below. Operators are defined for each section in order to 

indicate how to proceed for carrying out its execution. 

<Start, By deduction, Define method context>. The generic characteristics deduction is 

based on the context typology. This section gives a selection of characteristics carried out by the 

IS method engineer. The result of this strategy is a sub-set of generic characteristics available for 

a given project. The corresponding operator is: 

Select Context Characteristic () 

 

<Start, By deduction, Define method component context>. This section includes the 

selection of characteristics form generic typology like the previous one and includes furthermore 

the attribution of values to these characteristics. The result of this strategy is a sub-set of generic 

characteristics available for a given project with corresponding values. Two following operators 

are applied consecutively: 

Select Context Characteristic () 

Attribute a Value to Context Characteristic () 

 

<Start, By generation, Define method context>. The specific characteristics generation is 

based on the method description. The method engineer defines them by analyzing different 

aspects which are organized into four facets: intentional, satisfaction, decisional and internal. 

This section includes four operators. Each of the following operators is applied depending on the 

corresponding characteristic’s facet: 

Analyze Method Goal () 

Measure Method Satisfaction () 

Analyze Method Argumentation () 

Measure Method Characteristics () 

 

<Start, By generation, Define method component context>. The definition of specific 

characteristics for method components context is the same as for method context (the previous 

section) but also requires the attribution of characteristics values. This section uses the same four 

operators and adds another one that deals with the attribution of values to the characteristics. 

This last one is applied after each of the first four operators for defining concrete values of the 

identified specific characteristics. 

Analyze Method Goal () [for intentional facet] 



Measure Method Satisfaction () [for satisfaction facet] 

Analyze Method Argumentation () [for decisional facet] 

Measure Method Characteristics () [for internal facet] 

Attribute a Value to Context Characteristic () [for all facets] 

 

<Define method context, By instantiation, Define method component context>. The 

context characteristics instantiation is common for both characteristics types and is applied in the 

top-down approach. This section allows defining a sub-set of generic and specific method 

characteristics with an associated value for each method component separately. Several functions 

may be applied (sum, maximum, minimum, average, weighted sum, and so on) for attributing 

values to the method context. This section contains two operators applied consecutively: 

Retain Context Characteristic () 

Attribute a Value to Context Characteristic () 

 

<Define method component context, By assembly, Define method context>. In the case of 

the bottom-up approach, the strategy By assembly follows the definition of the method 

component context By deduction or By generation. The method engineer groups method 

components characteristics together. As a result, the method context includes all characteristics 

of its components contexts. The application of this strategy allows also defining characteristics’ 

values for the method context. This section is carried out by the following operator: 

Group Characteristics () 

Attribute a Value to Context Characteristic () 

 

<Define method context, By completeness, Stop> and <Define method component 

context, By completeness, Stop>. These sections are the same in both top-down and bottom-up 

approaches and include verification of completeness and coherence of the described context. The 

associated operator is: 

Verify Context Completeness () 

 

All these operators are resumed in the Table 10. 

 

Table 10. Operators’ Description. 

 

Operators Description 

Select Context 

Characteristic () 

Helps to select each of the pertinent characteristics of the context. 

Attribute a Value to 

Context Characteristic () 

For each characteristic selected, a value corresponding to the project 

context has to be defined. 

Analyze Method Goal () Helps to define the characteristics of the intentional facet which concerns 

the method intentions (the method goals). 

Measure Method 

Satisfaction () 

Helps to measure the satisfaction degree on the results obtained by the 

engineer and concerns the satisfaction facet. 

Analyze Method 

Argumentation () 

The decisional facet needs this operator in order to describe a decision-

making situation with the definition of the arguments to take into account 

in the DM process. 

Measure Method This operator is used to give values to the characteristics associated with 



Characteristics () the specific project management. 

Retain Context 

Characteristic () 

Helps to define a subset of characteristics (generic or specific 

characteristics) and to give them values adapted to the project. 

Group Characteristics () This operator allows to group all the characteristics together in the same 

set which corresponds to the context. 

Verify Context 

Completeness () 

Helps to study the completeness and the coherency of the context set of 

characteristics. 

 

4. APPLICATION: THREE CASES STUDIES 

In this section, we illustrate our proposal by applying the contextualization methodology to three 

cases: scenario conceptualization, project portfolio management and decision-making. 

We use the Map model for representing methods and for organizing method components into 

methods in our examples. The key concept of a Map is the notion of Section. When dealing with 

methods modeled by maps, each method component is represented by a map section. Thus, each 

Map section is linked to a particular method component, as shown in Fig. 10. 

 

 

 

Figure 10. Section and Method Component Correspondence. 

 

Each case study describes a particular map organizing method components. We then show 

how the engineer may use the contextualization map in order to create the context of the method/ 

components. 

 

4.1. Case Study #1: Scenario Conceptualization 

 

4.1.1. Case Study Description 

The first example is based on the map defined in the Crews-L’écritoire approach (Ralyté, 

Rolland, Plihon &Ralyté 1999). This map is given at Fig. 11. 

 

Method

MethodComponent

Map

Section

1..*

*

refines

1

0..1

is_represented_by



 

 

Figure11. Crews-L’écritoire Approach Map (CL Map). 

 

This map was created to support the elicitation of functional system requirements in a goal-

driven manner and to conceptualize them using textual devices such as scenarios or use cases. It 

provides guidelines to discover functional system requirements expressed as goals and to 

conceptualize these requirements as scenarios describing how the system satisfies the 

achievement of these goals. This map contains three main intentions, namely ‘Elicit a Goal’, 

‘Write a Scenario’ and ‘Conceptualize a Scenario’. There are twelve separate sections which 

allow the engineer to navigate through the map. Each of these sections is expressed as a specific 

component which is saved into a repository. 

 

4.1.2. Contextualization Process 

The engineer executes the contextualization map. He decided to select the top-down approach of 

the contextualization process. This specific way to navigate through the map will guide the 

engineer first through the definition of the method characteristics and then through the definition 

of the components ones. Fig. 12 shows the path used in the navigation through the map in order 

to define the method components contexts. 

 

 

 

Figure 12. Path used in the Contextualization Map for the CL Map Case Study. 
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This selected path contains three sections of the Contextualization Map and may be resumed 

on the three following steps: 

1. Definition of the method Context (S1),  

2. Definition of the method components contexts (S5), and  

3. Verification of the context completeness (S8). 

 

First step (S1: Definition of the method context). The engineer had studied the set of possible 

generic characteristics to specify the context of its method. He has applied the operator Select 

Context Characteristic () in order to define a sub-set of generic context characteristics according 

to the given project. In this example, he has selected three indicators: Expertise degree, 

Formality degree and Duration (See Table 11). 

 

Table 11. Generic facet values. 

 
Characteristic Value domain 

Human facet  

Expertise degree 3-grade scale 

Application domain facet 

Formality degree 3-grade scale 

Organisational facet  

Duration REAL 

 

Second step (S5: Definition of the method components context). The method context defined 

previously is instantiated in this step for each component (each section of the CL map). It means 

that a value has to be affected to each characteristic. The following operators are applied to each 

method characteristic: Retain Context Characteristic () and Attribute a Value to Context 

Characteristic (). Table 12 shows the values of these criteria applied to each section of the CL 

map. 

 

Table 12. CL map indicators 

 

Section 
Expertise 

degree 

Formality 

degree 
Duration 

S1 <Start; Initial goal identification strategy; Elicit a goal> 1 1 10 mn 

S2 <Elicit a goal; Goal structure driven strategy; elicit a goal> 1 2 15 mn 

S3 <Elicit a goal; Template driven strategy; elicit a goal> 1 3 15 mn 

S4 <Elicit a goal; Linguistic strategy; elicit a goal> 1 1 15 mn 

S5 <Elicit a goal; Template strategy; write a scenario> 2 3 10 mn 

S6 <Elicit a goal; Free prose strategy; write a scenario> 1 1 15 mn 

S7 <Write a scenario; Manual strategy; conceptualize a 

scenario> 

2 1 15 mn 

S8 <Write a scenario; Computer supported strategy; 

conceptualize a scenario> 

1 3 5 mn 

S9 <Conceptualize a scenario; Alternative discovery strategy; 1 1 20 mn 



Elicit a Goal> 

S10 <Conceptualize a scenario; Composition discovery strategy; 

Elicit a Goal> 

2 2 20 mn 

S11 <Conceptualize a scenario; Refinement discovery strategy; 

Elicit a Goal> 

2 2 20 mn 

S12 <Conceptualize a scenario; Completeness strategy; Stop> 1 1 5 mn 

 

Third step (S8: Verification of the context completeness). The engineer has decided that the 

identified context characteristics are sufficient by applying the operator Verify Context 

Completeness (). 

 

4.2. Case study #2: Project Portfolio Management 

 

4.2.1. Case Study Description 

The second example deals with Information Technology Project Portfolio Management (IT-

PPM). The Fig. 13 shows the IT-PPM intentional map which describes the ways to manage a 

project within a portfolio. 

 

 

 

Figure 13. IT-PPM Map. 

 

This Map is a refinement of the section < Define Risks, By Project Planning, Align IT and 

Business Process > of the map dealing with IT governance presented in (Claudepierre & Nurcan 

2009). This map contains three main intentions: ‘Identify project’, ‘Evaluate project’, and 

‘Prioritize project’ and ten associated sections. The related components are saved into a method 

base which includes their description and methodological guidelines for their application. 
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The engineer has selected the top-down approach of the contextualization process. It guides the 

engineer through the definition of the method characteristics before the definition of method 

component characteristics. Fig. 14 shows the path used in the navigation through the 

contextualization map in this particular case study. 

 

 

 

Figure 14. Path used in the Contextualization Map for the IT-PPM Case Study. 

 

This path contains four sections of the Contextualization Map that we represent within the 

three following steps: 

1. Definition of the method Context (S1 and S3),  

2. Definition of the method components contexts (S5), and 

3. Verification of the process completeness (S8). 

 

First step (S1, S3: Definition of Method Context). This step contains the execution of two 

sections of the Contextualization Map: S1 and S3.  

Definition of the generic characteristics (S1). The engineer uses the characteristics 

presented in Table 4 and Table 5 as generic characteristics to specify the context of the method. 

The engineer has applied the operator Select Context Characteristic () in order to define a sub-set 

of generic context characteristics according to the given project. He has selected three generic 

characteristics for this example: Expertise degree, Expert role and Application type (Table 13). 

 

Table 13. Generic Characteristics. 

 
Characteristic Value domain 

Human facet  

Expertise degree {low, normal, high} 

Expert role {tester, developer, designer, analyst} 

Application domain facet  

Application type {intra-organization application, inter-organization 

application, organization-customer application} 

 

Definition of the specific characteristics (S3). The engineer also uses specific context 

characteristics (cf. Table 14). This specific context is depicted by the constraints of the business 

environment (the design situation), the intention of the designer and the strategy for reaching the 

intention. So, the three operators were applied to identify the specific characteristics. Analyze 

Method Goal () is used to identify the Intention which is related to the intentional type of specific 

characteristic. Measure Method Satisfaction () allows defining the Situation in the Satisfactional 
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facet (as it describes the satisfaction degree of the previous intention). Finally, Analyze Method 

Argumentation () defines the Strategy in the decisional facet of the specific characteristic. 

 

Table 14. Specific Characteristics. 

 
Characteristic Value domain 

Intentional facet  

Intention TEXT 

Satisfactional facet  

Situation TEXT 

Decisional facet  

Strategy TEXT 

 

Second step (S5: Definition of Method Components Context). The method context defined 

at the previous step is now instantiated for each component. A value is affected to each 

characteristic in order to help the case process execution guidance. The following operators are 

applied to each method characteristic: Retain Context Characteristic () and Attribute a Value to 

Context Characteristic (). The results are presented in Table 15. 

 

Table 15. Specific Characteristics Instantiation. 

 

Section 
Expertise 

degree 

Expert 

role 

Appli. 

Type 

Situation Intention Strategy 

S1 <Start; By goals-oriented criteria 

identification; Identify project> 

Normal Analyst 

designer 

Intra-

Org. 

Problem 

statement 

Identify 

project 

By requirement 

consideration 

S2 <Identify project; By ad-hoc 

classification; Prioritize project> 

Low Analyst 

designer 

Intra-

Org. 

Project 

identified 

Prioritize 

project 

By ad-hoc 

classification 

S3 <Identify project; By goals-oriented 

criteria identification; Evaluate project> 

High Analyst 

designer 

Intra-

Org. 

Project 

identified 

Evaluate 

project 

By goals-oriented 

criteria 

identification 

S4 <Prioritize project; By modulating 

project development; Prioritize project> 

High Designer Intra-

Org. 

Project 

prioritized 

Prioritize 

project 

By modulating 

project 

development 

S5 <Prioritize project; By cancelling 

project portfolio; Stop> 

Low Designer Intra-

Org. 

Project 

prioritized 

Stop By canceling 

project portfolio 

S6 <Prioritize project; By project portfolio 

completion; Stop> 

Low Designer Intra-

Org. 

Project 

prioritized 

Stop By project 

portfolio 

completion 

S7 <Prioritize project; By controlling goal 

achievement; Evaluate project> 

Low Designer Intra-

Org. 

Project 

prioritized 

Evaluate 

project 

By controling goal 

achievement 

S8 <Evaluate project; By applying function 

over criteria; Prioritize project> 

Normal Analyst Intra-

Org. 

Project 

evaluated 

Prioritize 

project 

By applying 

function over 

criteria 

S9 <Evaluate project; By project 

completeness; Stop> 

Low Designer Intra-

Org. 

Project 

evaluated 

Stop By project 

completeness 

S10 <Evaluate project; By lack of goals-

coverage; Identify project> 

Normal Analyst Intra-

Org. 

Project 

evaluated 

Identify 

project 

By lack of goal 

coverage 

 



Third step (S8: Verification of the process completeness). The engineer has decided that the 

identified context characteristics are sufficient to allow a satisfying guidance through the 

portfolio project management by the operator Verify Context Completeness () application. 

 

4.3. Case Study #3: Decision-Making 

 

4.3.1. Case Study Description 

The third example allows defining context for the Decision-making (DM) generic process. The 

map model of the DM generic process (Kornyshova 2010) is given at Fig. 15. 

 

 

 

Figure 15. DM Generic Process Map (DM Map). 

 

The DM Method Family describes the generic DM process including the main activities used 

for DM. It can be used each time an IS engineer meets a DM situation. The DM map is a 

collection of DM method components organized into a generic process (a kind of multi-method) 

for their easier usage in practice. DM components represent detailed guidelines for DM activities 

associated to the specific context of their use. The DM map contains four main intentions: 

‘Define Alternatives’, ‘Define Criteria’, ‘Evaluate Alternatives’, and ‘Make Decision’ and 

twenty six sections, or DM method components. 
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4.3.2. Contextualization Process 

The engineer executes the contextualization map and selects the bottom-up approach of the 

contextualization process as he is able to qualify each DM component. In this case, the engineer 

specifies the contexts of all method components and assemblies them into the method context. 

The used path in the Contextualization Map is shown at Fig. 16. 

 

 

 

Figure 16. Path used in the Contextualization Map for the DM Map Case Study. 

 

This selected path contains four sections of the Contextualization Map and may be resumed 

on the three following steps: 

1. Definition of the method components contexts (S2 and S4), 

2. Definition of the method Context (S6), and 

3. Verification of the context completeness (S7). 

 

First step (S2, S4: Definition of Method Component Context). This step contains the 

execution of two sections of the Contextualization Map: S2 and S4.  

Definition of the generic characteristics (S2). The engineer uses the characteristics 

presented in Table 4 and Table 5 as generic characteristics to specify the context of the DM 

components. He has applied the operator Select Context Characteristic () in order to define a 

sub-set of generic context characteristics according to the given project. The engineer has 

selected two generic characteristics: Expertise degree, and Complexity degree (See Table 16). 

 

Table 16. Generic characteristics. 

 
Characteristic Value domain 

Application domain facet  

Complexity degree 3-grade scale 

Human facet  

Expertise degree 3-grade scale 

 

Then, the engineer attributes values to each DM method components using the Attribute a 

Value to Context Characteristic () operator (See Table 18). 
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The engineer has attributed values to twenty three DM components. The other three 

components (N/E – not evaluated values in Table 18) cannot be evaluated according to these 

characteristics as they depend significantly on the given situation. 

 

Definition of the specific characteristics (S4). The engineer also uses specific context 

characteristics (cf. Table 17) leading him to qualify method components. An operator was 

applied to identify the specific characteristics: Analyze Method Goal () for identifying the 

Intention. 

 

Table 17. Specific Characteristic. 

 
Characteristic Value domain 

Intentional facet  

Intention TEXT 

 

The engineer also attributes an intention to each DM method components using the Attribute 

a Value to Context Characteristic () operator (See Table 18). 

 

Table 18. Specific Characteristics Instantiation. 

 

Section 
Complexity 

degree 

Expertise 

degree 
Intention 

S1 <Start; By process exploring; Define alternatives> 2 2 Define alternative list 

S2 <Start; By product exploring; Define alternatives> 2 2 Define alternative list 

S3 <Define alternatives; By elimination; Define 

alternatives> 

1 1 Refine alternative list 

S4 <Define alternatives; By addition; Define alternatives> 1 1 Refine alternative list 

S5 <Define alternatives; By alternatives description analysis; 

Define criteria> 

2 1 Define criteria list 

S6 <Define alternatives; By consequences analysis; Define 

criteria> 

2 1 Define criteria list 

S7 <Define alternatives; By goal analysis; Define criteria> 1 1 Define criteria list 

S8 <Define alternatives; By predefined list exploring; 

Define criteria> 

1 1 Define criteria list 

S9 <Define criteria; By elimination; Define criteria> 1 2 Refine criteria list 

S10 <Define criteria; By addition; Define criteria> 1 2 Refine criteria list 

S11 <Define criteria; By weighting; Define criteria> 2 1 Define relative 

importance of criteria 

S12 <Define alternatives; By preferences analysis; Evaluate 

alternatives> 

2 1 Evaluate alternatives 

S13 <Define criteria; By measuring; Evaluate alternatives> 2 1 Evaluate alternatives 

S14 <Define criteria; By estimation; Evaluate alternatives> 2 1 Evaluate alternatives 

S15 <Define Criteria; By preferences analysis; Evaluate 

alternatives> 

2 1 Evaluate alternatives 

S16 <Evaluate alternatives; By domination analysis; Evaluate 

alternatives> 

2 2 Discard dominated 

alternatives 

S17 <Evaluate alternatives; By preferences analysis; Evaluate 

alternatives> 

2 2 Refine alternative 

evaluations 



S18 <Evaluate alternatives; By quantifying; Evaluate 

alternatives> 

1 2 Quantify alternative 

values 

S19 <Evaluate alternatives; By normalizing; Evaluate 

alternatives> 

1 2 Normalize alternative 

values 

S20 <Evaluate alternatives; By fuzzy values; Evaluate 

alternatives> 

3 3 Define fuzzy values of 

alternatives 

S21 <Define alternatives; By using arguments; Make 

decision> 

N/E N/E Make decision 

S22 <Define alternatives; By “From scratch” strategy; Make 

decision> 

N/E N/E Make decision 

S23 <Evaluate alternatives; By method-based approach; 

Make decision> 

3 3 Make decision 

S24 <Evaluate alternatives; By expertise; Make decision> N/E N/E Make decision 

S25 <Make decision; By prescription; Stop> 1 2 Prescribe decision 

S26 <Define alternatives; By validation; Stop> 1 3 Validate decision 

 

Second step (S6: Definition of the method context). In order to define the context 

characteristics of the DM method, the engineer uses the Group Characteristics () operator. For 

this, he takes all characteristics, specified for all components. Then he applies the Attribute a 

Value to Context Characteristic () operator for evaluating the method context characteristics. 

In order to attribute values to the method context (See Table 19), he chooses the maximal 

value for the characteristics Complexity degree and Expertise degree, and for intention, he takes 

the main intention which is the Make Decision intention (This intention is on the top of the 

taxonomy of the DM intentions.). 

 

Table 19. Method Context Values. 

 
Characteristic Value 

Complexity degree 3 

Expertise degree 3 

Intention Make Decision 

 

Third step (S8: Verification of the context completeness). The engineer has decided that the 

identified context characteristics are sufficient by applying the operator Verify Context 

Completeness (). 

 

4.4. Lessons Learned 

The three case studies have shown that the contextualization approach can be used in various 

areas of information system engineering. 

Closely related to the method at hand, it requires the strong degree of the engineer 

commitment into methodological processes. The engineers’ intervention is highly required at all 

steps of the contextualization process. In addition, it allows taking into account the specificity of 

each studied method, that is to say the context-awareness. The last one is one of the most 

important issues in the current science of IS engineering. In this manner, these three examples 

show how the contextualization approach can contribute to resolve this issue. 

The main usages of the contextualization results are the following: a more simple navigation 

through the map (in the case of Scenario conceptualization); a better ‘context-aware’ selection of 

method components (in the case of PPM); an easier customization of the generic process (in the 



case of DM); and, finally, means for identifying situations in which a given component is useful 

(three case studies). For instance, the Weighting DM method component (See Fig. 2) is useful in 

the situation characterized by the level 2 of complexity (normal), requiring the level 1 of 

expertise (low), and when the goal is to define the relative importance of criteria. 

However, these case studies have made obvious that it is more easily to use the generic 

characteristics of context then to try to find some specific characteristics. It means that the 

operators for identifying specific characteristics must be enhanced. 

 

5. RELATED WORKS 

The current work was motivated by a need to formalize an approach for specifying context of 

methods and method components. It is related to the following fields of information system 

engineering: situational method engineering (SME), decision-making in information system 

engineering, and process variability. 

SME approaches. Several works has been done to define the concept of method component 

in order to obtain flexible methods. The different kind of method components present in the 

literature are the method fragment (Brinkkemper 1996), the method chunk (Ralyté, Deneckère & 

Rolland 2003), the method component (Wistrand & Karlsson 2004), the OPF fragment 

(Henderson-Sellers 2002) and the method service (Guzélian & Cauvet 2007). Some details on 

these method components are given in section 2.2. In this field, the paper contributes to the 

methodology of identifying and evaluating method context characteristics. 

Decision-making methods in ISE. With regard to IS engineering, the issue of DM has 

already been explored with respect to requirements engineering [NgoTheAl2005], to method 

engineering [Aydin2006], and, more generally, to systems engineering [Ruhe2003]. Ruhe 

emphasizes the importance of DM in SE along the whole life cycle [Ruhe2003]. However, DM 

in IS engineering has several lacks: (i) decisions are not formalized in terms of alternatives and 

criteria, their consequences are not analyzed, decisions are not transparent, (ii) at intuitive and ad 

hoc decisions overshadow method-based ones, (iii) and there is no tool which covers a complete 

DM process even if DM tools exist. To overcome these drawbacks, some studies are made, for 

instance a generic DM process is proposed (Kornyshova 2010) and an ontology of the DM 

concepts is elaborated (Kornyshova & Deneckère 2010). 

Process variability and the MAP process model. Variability has proved to be a central 

concept in different engineering domains to develop solutions that can be easily adapted to 

different organizational settings and different sets of customers at a low price. The MAP 

formalism has a high level of variability as it is expressed in an intentional manner through goals 

and strategies. As a high level of variability means a high number of variation points, a process 

customization is then required to offer a better guidance. In a parallel way to the Product lines 

concept which has appeared within the management of variability and customization of products, 

a new concept has arise to represent the processes that may be customized to a given project: the 

Process lines (Deneckère & Kornyshova 2010a). In (Deneckère & Kornyshova 2010b), Maps are 

considered as Process lines and a typology of characteristics is used to configure the line in order 

to obtain a process adapted to the project at hand. 

 

6. DISCUSSION AND CONCLUDING REMARKS 

The situational method engineering field aims at considering methods as a set of method 

components. Different approaches have been defined to consider this concept of method 

component (method fragment, method component, method services, method chunk, and OPF 



fragment). Each of these approaches mainly focus on the definition of what is a method 

component and how to assemble them in order to create a new method adapted to the project at 

hand. All of these approaches hint the fact that the notion of context has to be used to enhance 

the method component retrieving as they use several context related notions (interface, 

contingency factors, development situation, and so on). However, the process of how to identify 

and evaluate the method context is not suggested and our proposal is (i) to give a strong 

definition of a method component context and (ii) to offer a contextualization process which will 

help engineers to define the method components context with ease. 

Strong definition of a method component context. We have studied the literature in order to 

define the criteria that may be used to characterize the situation in which method components 

may be used. This leads us to define a typology of characteristics which we have structured in 

different facets (each considering a special view of a project). We then related these 

characteristics to the method component concepts. 

Contextualization process. We have identified two possible ways to use these characteristics 

for defining context (the top-down and the bottom-up approaches) in order to propose a 

contextualization process that may be adapted to several situations. We modeled this process 

with the MAP formalism in order to keep a high level of flexibility in the process utilization. 

 

This proposal can be applied in different IS engineering situations such as the selection of a 

component for enhancing the existing IS engineering method (for instance, extension-based 

approaches) or a selection of several components for constructing a new one (for instance, 

assembly-based approaches).  

We have applied the proposed model on three case studies as follows.  

• Scenario Conceptualization. This case is based on a well know process used on the 

project ‘Crews L’Ecritoire’. The case study use the contextualization process to help the 

engineer to navigate through the process and select the right components following its degree of 

expertise, the duration of each performed component and its formality degree (which are generic 

characteristics of the typology). 

• IT Project Portfolio Management. This case study contributes to the study of the 

relatively unexplored domain of IT governance from the SME point of view. The engineer 

selects more characteristics than in the first case study as he chooses also specific characteristics 

(characteristics to apply on a specific process model, in this case the MAP process model). 

• Decision making. The contribution of this case study is twofold: the validation of the 

contextualization methodology and the application of the SME principles to a field issue from 

the operational research. Firstly, the DM case study has shown how to describe the context of 

DM components using three characteristics (complexity degree, expertise degree, and intention) 

and to identify the method context from the context of its components. Secondly, this case has 

demonstrated that the SME approach (identification of method components and their 

contextualization) is successfully applied to the DM methods for their further utilization in the IS 

engineering field. 

Our future work aims at: (i) enhancing the approach for a more simple identification of 

specific context characteristics; (ii) ensuring the adaptability of methods with regards to the 

context specificities; and (iii) proposing a method for a formalized selection of method 

components following their characteristics values. 
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