
HAL Id: hal-00662127
https://paris1.hal.science/hal-00662127v1

Submitted on 24 May 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Method Component Contextualization
Elena Kornyshova, Rebecca Deneckere, Bruno Claudepierre

To cite this version:
Elena Kornyshova, Rebecca Deneckere, Bruno Claudepierre. Towards Method Component Contextu-
alization. International Journal of Information System Modeling and Design, 2011, 2 (4), pp.49-81.
�10.4018/jismd.2011100103�. �hal-00662127�

https://paris1.hal.science/hal-00662127v1
https://hal.archives-ouvertes.fr

Towards Method Component

Contextualization

Elena Kornyshova, Rébecca Deneckère, Bruno Claudepierre

Centre de Recherche en Informatique,

Université Paris I – Panthéon Sorbonne, Paris, France

ABSTRACT

Method Engineering (ME) is a discipline which aims to bring effective solutions to the

construction, improvement and modification of the methods used to develop Information

Systems (IS). Situational Method Engineering (SME) promotes the idea of retrieving, adapting

and tailoring components, rather than complete methodologies, to the specific context. Existing

SME approaches use the notion of context for characterizing situations of IS development

projects and for guiding the method components selection from a repository. However, in the

reviewed literature, there is no proposed approach to specify the specific context of method

components. This paper provides a detailed vision of context and a process for contextualizing

methods in the IS domain. Our proposal is illustrated with three case studies: scenario

conceptualization, project portfolio management and decision-making.

Keywords: Method engineering; Method component; Contextualization.

1. INTRODUCTION

An IS development methodology (ISDM) is a set of ideas, approaches, techniques and tools

which system analysts use to help them transforming organizational needs into an appropriate

Information System. The application areas of these methodologies are various. Because of this

diversity, it is now apparent that a universal method that could be applied to deal with any IS

development project does not exist. Method engineering (ME) represents the effort to improve

the usefulness of ISDM by creating an adaptation framework whereby methods are created to

match specific organizational situations. ME aims to find solutions to the construction,

improvement and modification of the methods used to develop information systems. One of the

ME fundamentals for optimizing, reusing, and ensuring flexibility and adaptability of these

methods is their decomposition into modular parts (Harmsen, Brinkkemper & Han Oei 1994)

(Rolland 2005). This purpose is the object of Situational Method Engineering (SME) which

promotes the idea of retrieving, adapting and tailoring components, rather than complete

methodologies, to the specific context.

Existing SME approaches consider the notion of context in order to guide the selection of a

method component from a repository according to a given situation. They also deal with

different kinds of context factors characterizing situations of IS development projects and offer

various methodologies for using context. For instance, the method component context is studied

in different approaches and is represented as: reuse frame (Mirbel 2008); interface (Ralyté &

Rolland 2001b); method service context (Guzélian & Cauvet 2007); contingency factors (Van

Slooten & Hodes 1996), (Harmsen 1997); development situation (Karlsson & Agerfalk 2004).

These approaches foresee different context elements which are the characteristics of method

components.

However, the reviewed literature shows that, firstly, there is no approach considering all of

the possible characteristics and, secondly, these approaches do not suggest a methodology

allowing to define a set of concrete context characteristics for a given method.

In our view, the context is a set of characteristics which describes situations of a method

application. The context is defined for an IS development method and its components. Each

method component is then described by concrete values of these characteristics. In this paper, we

focus on the contextualization of method components. Our goal is to propose (i) a generic model

of context based on the state-of-the-art and (ii) an IS development methods contextualization

process. We introduce the frame of contextualization, we present the context model, the context

typology and the process to construct the context characteristics set for a given method. We

illustrate our proposal with three case studies: scenario conceptualization, project portfolio

management and decision-making.

All processes in this work are formalized with the MAP model which is commonly used in

the ME field (Rolland, Prakah & Benjamen 1999). In our proposal, this formalism is used to

represent the contextualization process in an intentional way. In the case studies, it is used to

represent the organization of the method components (the links between them).

The paper is organized as follows. The notion of method component is described in the

second section. Third section surveys a state-of-the-art on the notion of context. The fourth

section proposes a context model and a process for the contextualization of method components.

We illustrate our proposal with examples in the fifth section. Related works are given in the sixth

section. A conclusion and future works are given in the last section.

2. CONTEXT AND ITS APPLICATION IN METHOD ENGINEERING

2.1. Cross domains application of Context-awareness

(Bouquet, Ghidini, Giunchiglia & Blanzieri 2003) states that the study of context was started in

the 70’s. Since then, many different domains in relation with information systems use the notion

of context and give various interpretations of it. For instance, (Dey, Abowd & Salber 2001)

defines the notion of context by the information that could be used for characterizing the

situation of an entity (person, object or computer), and, more generally, by any element that can

influence the IS behavior. (Rey & Coutaz 2002) foresees the context from four points of view:

• The context must be defined in terms of an object. It means that “there is no context

without context”.

• The capture of context is not the goal in itself but the captured data must serve a

purpose.

• The context is an information space shared by multiple actors (users and systems).

• The context is infinite and varies with the passing of time.

Context models are multidisciplinary and have been proposed in several areas (Bradley &

Dunlop 2005). The linguistic research is concerned with analyzing the usage context of signs (or

words) within a language. Bunt (Bunt 1997) defines five types of context for communication

aspects which are respectively:

• Linguistic: refers to linguistic material;

• Semantic: refers to domain description including objects and properties;

• Physical: refers to the environment description in which action or interaction occurs;

• Social: refers to the interactive situation which occurs between actors;

• Cognitive: refers to the participants’ intentions, their evolution relating to perception,

production, evaluation and execution.

Context is also formalized using mathematical models. For instance, (Coutaz & Rey 2002)

proposes a cumulative model where the context (Ctx) is a timely aggregation of situations. A

situation is a state descriptor for a user (U) performing a task (T) at a specific time (t). The model

is depicted by the following formula:

Related to the Information technologies field, the context is represented as a model or an

ontology. For instance, (Gu, Wang, Pung & Zhang, 2004) suggests a more detailed vision of

context. It describes a formal context model based on ontology for intelligent environments. This

context ontology defines a vocabulary for representing knowledge about context in this field. It

includes two levels: upper ontology (capturing general context knowledge) and domain-specific

ontologies (detailing basic concepts in application to a given domain). (Gu, Wang, Pung &

Zhang, 2004) also specifies a way for modeling context classification, dependency between

context elements, and quality of context.

In the field of Knowledge Representation and Reasoning (KRR), which is an area of Artificial

Intelligence, two types of the context theory have been proposed: (i) divide-and-conquer, which

sees context as a way of partitioning a global model of the world into smaller and simpler pieces

and (ii) compose-and-conquer, which sees context as a local theory of the world in a network of

relations with other local theories (Bouquet, Ghidini, Giunchiglia & Blanzieri 2003).

Another term, closely related to the context one, is context-awareness. Context awareness is a

term originating from pervasive computing, or ubiquitous computing (Schilit, Adams & Want

1994). These systems deal with linking changes in the environment with computer systems,

which are otherwise static. Although it is a computer science term, it has also been applied to

business theory in relation to business process management issues (Rosemann & Recker 2006).

There are numerous context-awareness applications when human interactions occur. More

related to our study, context models are also proposed for business process reengineering

(Bessai, Claudepierre, Saidani & Nurcan 2008), computer science (Bradley & Dunlop 2005),

service selection (Kirsch Pinheiro, Vanrompay & Berbers 2008) and decision-making within a

military situation (Rosen, Fiore, Salas, Letsky & Warner 2008), (Drury & Scott 2008). In latter

cases, the context model is seen as a way to analyze a given situation to guide the way of

processing. Thus, context models are mainly used to solve the problem of lacking flexibility and

adaptability within processes.

2.2. Method Engineering and Method Components

Method Engineering is a discipline which aims to bring effective solutions to the construction,

improvement and modification of the methods used to develop information and software

systems. Several authors tried to design methods that would be as effective and as adapted as

possible to the development needs of information systems (Firesmith & Henderson-Sellers 2001)

(Rolland & Cauvet 1992). This goal was not always reached, especially because the methods

were not always well adapted to projects specificities. The situational methods were designed to

correct this weakness. The situational approach finds its justification in the practical field

analysis which shows that a method is never followed literally (Ralyte 2001) (Mirbel & de

Rivieres 2002). Situational Method Engineering promotes the idea of using components, instead

of complete methodologies, to specific situations (Ralyté & Rolland 2001a). In order to succeed

in creating good methodologies that best suit given situations, components (building blocks of

methodologies) representation and cataloguing are very important activities. In particular, the

components have to be represented in a uniform way that includes all the necessary information

that may influence their retrieval and assembling.

The notion of method component is central of SME as it promotes the idea of retrieving,

adapting and tailoring modular parts, rather than complete methodologies, to specific situations.

There are various representations of modular parts: fragments (Brinkkemper 1996), chunks

(Rolland, Plihon & Ralyté 1998), components (Wistrand & Karlsson 2004), OPF fragments

(Henderson-Sellers 2002) and method services (Deneckère, Iacovelli, Kornyshova & Souveyet

2008) (Guzélian & Cauvet 2007) (Iacovelli, Souveyet & Rolland 2008).

Method fragment approach (Brinkkemper 1996). Fragments are standardized building

blocks based on a coherent part of method. A fragment is either a Product or a Process fragment

and is stored on a method base from which they can be retrieved to construct a new method

following assembly rules (Bunt 1997). The method component definition consists in encouraging

a global analysis of the project while basing itself on contingency criteria. Projects and situations

are characterized by means of factors associated with the methods.

Method chunk approach (Ralyté, Deneckère & Rolland 2003). A chunk is described as a

way to capture more of the situational aspects in ME and to appropriately support the retrieval

process. A chunk based method aims at associating the reusable components to their description

in order to facilitate component research and extraction according to the user's needs. The chunk

approach expresses projects requirements (the context) as a requirements map, which is used to

test the similarity between requirements and existing components.

Method component (Wistrand & Karlsson 2004). Components allow viewing methods as

constituted by exchangeable and reusable components. Each component consists of descriptions

for process (rules and recommendations), notations (semantic, syntactic and symbolic rules for

documentation), and concepts. This approach introduces the notion of method rationale which is

the systematic treatment of the arguments and reasons behind a particular method. In the same

way, the component description contains its rationale. Its matching with the context is performed

by goal analysis.

OPF fragment (Henderson-Sellers 2002). In the OPEN Process Framework (OPF), the

fragment is generated from an element in a prescribed underpinning meta-model. This meta-

model has been upgraded with the availability of the international standard ISO/IEC 24744.

Method service (Guzélian & Cauvet 2007). This approach offers a repository with a large

variety of method fragments, called method services, together with a service composition

process. During composition, the process guides developer’s choices; it selects method services

and delivers a method fragment that achieves developer’s requirements. The SO2M meta-model

is based on three main principles: service orientation, task ontology for reuse of knowledge on

development problems and dynamic construction of method services for generating tailored

methods. The method service approach uses an identification part that defines the purpose of the

service. The component retrieval is thus done by using goal, actor, process, and product

ontologies.

(Deneckère, Iacovelli, Kornyshova & Souveyet 2008) structures the process of SME

according to three steps of manipulating method components:

(a) the decomposition of methods into components which are stored in a method repository,

(b) the retrieval of components that better match the project specificities and

(c) the construction of a new method with these selected components.

According to these steps, different method components could be compared according to the

four following criteria: decomposition principle, retrieval/selection principle, matching with

situation, and construction technique (See Table 1).

First, the methods are decomposed into methods components which are stored in method base

(or repository). Thus, we define the criterion “decomposition principle” which deals with

different ways to decompose methods into components. This principle predefines the

components’ description used for their identification during project fulfilment.

Once the methods are decomposed and stored in the base, they could be used in the projects.

On the first step, the engineer must find in the method base the components that better match the

project specificities. On this basis, we identify two criteria: retrieval/selection principle and

matching with situation. The retrieval/selection principle defines steps to carry out for

identifying an appropriate component. In ME, all approaches are situational, which means they

take into account the specific project situation by different manners. This aspect is considered

within the matching with situation attribute.

The next step is to build a new method from the selected components. Based on (Nehan &

Deneckère 2007), we distinguish the following main manners to use components for

constructing a new method according to project specificities: assembly, extension, and reduction.

By assembly, separate fragments are grouped with regard to the studied specific project to form a

unique method (Ralyté, Deneckere & Rolland 2003). By applying extension, a basic method is

transformed into a new one by addition of new components (Ralyté, Deneckere & Rolland

2003). By reduction, some components are removed from the basic method in order to transform

it to match the engineer's needs (Wistrand & Karlsson 2004).

Table 1. Method Components Comparison.

Criteria Fragment Chunk Component OPF Fragment Method Service

Decomposition

principle

 by intentions by goal inheritance,

instantiation

Not specified

Retrieval/selecti

on principle

Request similarity

measure

request by goal request by goal semantic similarity

Matching with

situation

project

characterisati

on

requirements

map

 by goal and

actor

by goal, actor, process,

and product ontologies

Construction

technique

assembly assembly,

extension

assembly,

extension,

reduction

agile assembly without

overlapping

Decomposition Principle. The decomposition principle is quite different following the

component type. Method fragment uses a tree decomposition to link all coherent method parts.

Chunks are obtained by intentional decomposition of methods (Ralyté, Deneckere & Rolland

2003). The OPF fragment is a clabject, which is a result of both instantiation and inheritance

(Gonzales-Perez 2007). Components are decomposed by goals (Wistrand & Karlsson 2004). The

method service approach does not specify this attribute value.

Retrieval/Selection Principle. The retrieval and selection of a method fragment are made by

different types of queries. Chunks are selected with the application of similarity measures of

their descriptors and interfaces. This helps to evaluate the degree of matching between them and

the requirements (Ralyté, Deneckere & Rolland 2003). On the same way, the method service

selection is made by a comparison of the requirements (expressed by intentions) with the service

intentional descriptors by ontologies, which allow comparing the semantic similarity (Guzélian

& Cauvet 2007). Differently, OPF fragments, stored on a ‘work product tool’, are selected with

queries on their endeavour (Gonzales-Perez 2007). Method fragments are selected by application

of request on the goal (Harmsen, Brinkkemper & Oei 1994).

Matching with situation. Approaches don’t match the situation with the same techniques.

The method fragment definition consists in encouraging a global analysis of the project while

basing itself on contingency criteria. Projects and situations are characterized by means of factors

associated with the methods. The chunk approach includes projects requirements expressed as a

requirements map (Ralyté, Deneckere & Rolland 2003), which is used to test the similarity

between requirements and existing fragments. In component containing its "rational", the

matching is performed by goal analysis (Wistrand & Karlsson 2004). The Method service

approach uses an identification part that defines the purpose of the service. The matching is thus

done by using goal, actor, process, and product ontologies (Guzélian & Cauvet 2007).

Construction technique. The method fragments are assembled for creating a new method.

The chunk approach uses assembly (allowing overlapping between different chunks) and

extension. In addition to the assembling and extending, the component approach suggests

method reduction. The method service construction is based on a composition process that

supports the aggregation of services in sequence or in parallel (Guzélian & Cauvet 2007). In the

OPF approach, a new method is constructed by dynamic instantiation of fragments during the

project. Hence, the OPF approach suggests an agile construction of methods.

A more detailed comparison of these different kinds of modular parts may be found in

(Deneckère, Iacovelli, Kornyshova & Souveyet 2008).

Figure 1. Method Component Meta-model.

Our view of a component has been described in (Deneckère, Iacovelli, Kornyshova &

Souveyet 2008). We based our method component on the method chunk for its intrinsic

intentionality as we decompose the methods into method components according to an intentional

MethodComponent

ID

name

*

ProcessPartProductPart

SourceProductPart TargetProductPart

Intention

principle. This part will then be used for retrieving and selecting method components from the

method base. We suggest modelling method components as shown at Fig. 1.

Method components are expressed at different granularity, at various levels of abstraction. For

instance, a component may be an entire method that can be decomposed into other less complex

components (which, in turn, may also be decomposed into other more simple components, and

so on). They are a representation of the components composition.

The intention describes the general purpose of the component. The product part corresponds

to the description of the component input and output product models. The source product part

defines the product required for applying the component. The target product part defines the

result, which must be obtained by the component application. The process part contains

guidelines which explain how to apply the component in order to obtain the product part.

For instance, a method component Weighting is given at Fig. 2. for illustrating this model.

This component is part of decision-making methods. It allows defining weights to criteria in a

given decision-making situation. The Weighting component is described by its ID ant its name.

Its intention is to Define relative importance of criteria. The source product part is composed of

criteria organized into a set. The target product part includes also a weight class. The process part

describes the main steps to follow for defining weights, namely: scale criteria according to their

importance, attribute values from 1 to 100 to each criterion, and calculate relative importance.

Finally, it shows how to create the corresponding class if necessary.

Figure 2. Decision-making Method Component Weighting.

MethodComponent Intention

Define relative importance of

criteria

Process Part

() Scale criteria according to their importance

() Attribute values from 1 to 100 to each criterion

() Calculate relative importance

() Create corresponding class:

MethodComponent.ID=M.cc3

MethodComponent.name=Weighting

AddClass ‘Weight’

AddAttribute ‘value’

SetValue ‘value’

Add Association ‘is_defined_for’

Source Product Part Target Product Part

Criterion

CriteriaSet

*

Criterion
Weight

value: Real
is_defined_for

1 0..1

CriteriaSet

*

Product Part

2.3. Method Components Context

Based on the study of different SME approaches dealing with method components, we have

identified five main approaches dealing with context in the method engineering field.

Reuse frame. The reuse frame (Mirbel 2008) is a framework representing different factors

which affect IS development projects. These factors are called criteria. Reuse frame allows

specifying a context of method fragments reuse, searching method fragments and comparing

between them in order to find an alternative fragment to a used one. The reuse frame model

includes a reuse situation (which is a set of criteria classified into three dimensions:

organizational, technique and human) and reuse intention.

Interface. In (Ralyté & Rolland 2001b) the method fragment context is defined by its

interface which includes a situation and an intention. The situation represents the conditions in

which the method fragment can be applied in terms of required inputs product(s). The intention

is a goal that the method fragment helps to achieve. Therefore, the interface model includes two

elements: the situation and the intention. These two first approaches have been unified in (Mirbel

& Ralyté 2006).

Method service context. The method service context (Guzélian & Cauvet 2007) aims at

describing the situation in project development for which the method service is suitable and

defining the purpose of the service. Its model includes domain characteristics (project nature,

project domain) and human (actor), process and product ontologies.

Contingency factors. Situations (the context) are described by a set of characteristics called

contingency factors (Van Slooten & Hodes 1996) or project factors (Harmsen 1997; Harmsen,

Brinkkemper & Oei 1994). These factors are used to define the project situation by assigning

values to them. In (Van Slooten & Hodes 1996), four categories are given: domain

characteristics (describing the content of the system), external factors (laws and norms),

technical factors (related to the development platform) and human factors (representing the

development expertise of people).

Development situation. (Karlsson & Agerfalk 2004) defines the development situation as an

abstraction of one or more existing/future software development projects with common

characteristics. This situation is used to characterize the specific projects and to select

configuration packages (method fragments). The development situation model includes a

characteristics set.

Based on the review of these five approaches, we have identified height characteristics

(context elements) which allow us to compare existing context approaches (See Table 2). This

comparison highlights that there is no approach which consider all possible characteristics.

Moreover, the analysis of these context approaches shows that they do not suggest a way to

specify context characteristics. For instance, the context of the DM method component illustrated

at Fig. 2 must be defined in order to state in what kind of situation this component is useful.

However, the existing literature does not provide means for defining its context.

Table 2. Comparative analysis of approaches dealing with context in ME field: context elements.

Approach

Characteristics

Goal/

Intention

Organiza-

tional
Technical Human Domain External Process Product

Reuse Frame X X X X

Interface X X

Method service

context
 X X X X

Contingency

factors
 X X X X

Development

situation
Not specified

3. CONTEXTUALIZATION OF METHOD COMPONENTS

3.1. Our proposal

In SME, all approaches are situational, which means they take into account the specific project

situation (or Context). However, the definition or description of this context is often just

superficially addressed.

Our proposal uses the context expressiveness to describe the situation in which a component

may be applied. It is then based on the semantic type of context previously presented. Moreover,

our view of a component includes an intention oriented approach which allows representing the

cognitive aspect of the context.

The preceding comparative analysis of context approaches shows that they address several

aspects of context. However, they do not cover all of them and do not help in the context

characteristics specification. Our goal is to enhance the definition of the context of IS

development method for the further selection of components from a repository according to a

given situation. In the following we present our vision of context and a process to define the

context for a given method.

3.2. Enhanced definition of method context

We propose to consider the context granularity at two levels: the method and method

component ones (See Fig. 3. for the proposal overview). Each method is available in a given

context. As a method is composed of some components, each of them can be also described by

specifying its context. Therefore, the method context is an aggregation of contexts associated to

its components.

Figure 3. Proposal Overview.

Method MethodContext

MethodComponent MethodComponentContext

*

is_associated_to

is associated to

is_applied_to

*

In our proposal, we describe the context as a set of characteristics. These characteristics

describe situations of a method application. The detailed context model is presented at Fig. 4.

Figure 4. Context Model.

The central element of this model is characteristic. A set of characteristics constitute the

context. Context characteristics indicate specific conditions to use the component.

Characteristics are organized into facets for better representation and comprehension. We

distinguish two types of characteristics (and consequently two types of facets): generic and

specific. The first ones are common for most IS engineering projects; the latter ones vary from

one project to another. To distinguish between them is important because of their different

identification approaches. The context characteristics set is defined for a method component.

Therefore, each method component is described by the valuations of these characteristics (value).

In the following, we describe different context characteristics by facets.

Generic characteristics. In order to establish the typology of generic characteristics we have

used IS development project characteristics (Kornyshova, Deneckère & Salinesi 2007). In this

work, a project characteristics typology is proposed in order to guide method components

retrieval and to prioritize the selected components.

The suggested typology of context characteristics covers essential aspects of IS engineering

projects. Based on (Mirbel & Ralyté 2006), (Van slooten & Hodes 1996) and (Kornyshova,

Deneckère & Salinesi 2007), it includes four facets: organizational, human, application domain,

and development strategy.

The organizational facet (Table 3) highlights organizational aspects of IS project

development. For instance, the Management Commitment characteristic represents the

management team involvement in the project. Possible values for this characteristic are Low,

Normal and High (i.e. a High value means a high involvement and so on).

MethodComponent

ID

name

*

FacetCharacteristic *

Value Context

Generic

*

Specific

Organizational

Human

ApplicationDomain

DevelopmentStrategy

Intentional

Satisfactional

Decisional

Internal

Table 3. Organizational Facet Characteristics.

Characterisitc Type Value domain

Management commitment degree Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Importance degree Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Impact degree Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Time pressure degree Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Shortage of resources degree Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Level of innovation degree Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Size Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Cost Quantative REAL

Qualitative ENUM:{low, normal, high}

Nature of limited resources Qualitative ENUM:{financial, human, temporal, informational }

Innovation nature Qualitative ENUM:{business innovation, technology innovation}

Duration Quantative REAL

The human facet (Table 4) describes the qualities of persons involved in IS project

development. For example, the User involvement characteristic represents the kind of

participation of the users in the project. Its values may be real or virtual.

Table 4. Human Facet Characteristics.

Characterisitc Type Value domain

Resistance degree Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Conflict degree Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Expertise degree Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Clarity degree Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Stability degree Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Expert role Qualitative ENUM:{tester, developer, designer, analyst}

User involvement Qualitative ENUM:{real, virtual}

Stakeholder number Quantative NUMBER

The application domain facet (Table 5) includes indicators characterizing the domain of IS

project. For instance, the Application type characteristic deals with the different kinds of projects

according to the organization structure and can have the following values: intra-organization

application, inter-organization application, organization-customer application.

Table 5. Application Domain Facet Characteristics.

Characterisitc Type Value domain

Formality degree Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Relationships degree Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Dependency degree Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Complexity degree Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Repetitiveness degree Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Variability degree Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Application type Qualitative ENUM:{intra-organization, inter-organization,

organization-customer }

Application technology Qualitative ENUM:{application to develop includes a database,

application to develop is distributed, application to

develop includes a GUI}

Dividing project Qualitative ENUM:{one single system, establishing system-oriented

subprojects, establishing process-oriented subprojects,

establishing hybrid subprojects}

Variable artefacts Qualitative ENUM:{organisational, human, application domain, and

development strategy}

The development strategy facet (Table 6) gathers indicators about different characteristics of

development strategy. For instance, the Source system characteristic represents the origin of the

reused elements that may be code, functional domain or interface.

Table 6. Development Strategy Facet Characteristics.

Characterisitc Type Value domain

Source system Qualitative ENUM:{code reuse, functional domain reuse, interface

reuse}

Project organization Qualitative ENUM:{standard, adapted}

Development strategy Qualitative ENUM:{outsourcing, iterative, prototyping, phase-wise,

tile-wise}

Realization strategy Qualitative ENUM:{at once, incremental, concurrent, overlapping}

Delivery strategy Qualitative ENUM:{at once, incremental, evolutionary}

Tracing project Qualitative ENUM:{weak, strong}

Goal number Quantative NUMBER

 Qualitative ENUM:{one goal, multi-goals}

Specific characteristics. Their identification is based on the method description. The method

engineer defines them by analyzing different aspects which are organized into four facets:

intentional, satisfaction, decisional and internal, like in (Harmsen 1997).

The intentional facet concerns the method intentions. The satisfaction facet indicates the

satisfaction degree that the engineer has about the method application results. The decisional

facet arises from a decision-making process in the method. The internal facet concerns the

known criteria associated with the specific project management. For the specific map

characteristics see Table 7.

Table 7. Specific Map Characteristics.

Characterisitc Type Value domain

Goal satisfaction degree Quantative 3-grade scale.

Qualitative ENUM:{low, normal, high}

Goal achievement degree Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Section satisfaction degree Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Section completeness degree Quantative 3-grade scale

Qualitative ENUM:{low, normal, high}

Table 8 shows the correspondence between the proposed typology and the existing context

elements (analyzed in the previous section). We can make some remarks to compare them:

• Our typology covers all existing elements.

• We propose to identify more precisely process and product characteristics using our

approach instead of using product and process as context characteristics directly.

• We add decisional characteristics which are not presented in the existing typologies.

Table 8. Correspondence between the proposed typology and existing context elements.

Proposed Typology Context Elements (cf. Table 2)

Organizational Organizational

Human Human

Application domain Domain

Development strategy Technical

Intentional Goal/ Intention

Satisfaction External, Process, Product

Decisional Process, Product

Internal Technical, Process, Product

Our typology indicates the main characteristics that can be defined in function of a given

situation. It can be completed if new characteristics arise. Fig. 5 illustrates the obtained

characteristics typology as an ontology, like in (Gu, Wang, Pung & Zhang, 2004).

Figure 5. Characteristics ontology.

3.3. Contextualization methodology

In order to define the context for a given method and its components, we propose an approach

based on the contextualization process modeled with the MAP formalism.

3.3.1. Map Formalism

A MAP illustrates a given process of IS engineering. The MAP model (Rolland, Prakash &

Benjamen 1999) is a representation of process models expressed in intentional terms. It allows

specifying process models in a flexible way by focusing on the process intentions, and on the

various ways to achieve each of these intentions.

The meta-model of MAP (Rolland & Prakash 2001) is represented as a UML class diagram

(See Fig. 6).

Figure 6. Map Meta-model.

Characteristic

Generic

Specific

Organizational

Development

strategyApplication

domain

Human

Intentional

Satisfaction

Decisional

Internal

Management

commitment

Importance

Expertise

degree

User

involvement

…

…

Formality

Complexity

…

Project

organization

Delivery

strategy

…

Situation

…

Intention

…

Strategy

…

Section

code
description

Map

code
description

Intention

Start

Stop

Strategy

2..*

Refinement

1..*

0..1

Path

1..*

1..*

Thread

1..*

1..*
Bundle

1..*

1..*

1..*

Source1..*

Target1..*

A Map is a combination of at least two sections. Each Map has a code and a description which

allow identifying it. The Map code depends on the Map position according to the refinement

levels. The Map description gives a main purpose of the Map, or in other words, its main

intention.

The Map model enables to represent non-deterministic sequences of activities. It is expressed

through the combination of different intentions and strategies used for achieving these intentions.

Actually, an engineer has several intentions or goals that he(she) wants to achieve. Furthermore,

there are several ways of achieving these intentions. The Map model allows considering

intentions and strategies in ISE processes in order to perform them in a flexible manner.

An Intention is a goal that can be achieved by the performance of an activity. Each map has

two special intentions, Start and Stop, to begin and to end the map respectively (Rolland &

Prakash 2001). (Prat 1997) suggest a model to describe the intention in details. This model has

already been applied to the method engineering field in order to represent the intention of the

method chunks (Ralyte 2001). Following this model, the intention is expressed in natural

language and is composed of a verb and at least one parameter. Each parameter has a particular

role with regard to the verb. An example is the Identify DM Requirements intention. The detailed

description of the intention elements could be found in (Prat 1997) (Ralyte 2001).

A Strategy is an approach, a manner to achieve an intention (Rolland & Prakash 2001). Each

strategy relates two intentions. The strategy concept allows, firstly, separating the goal and the

manner to achieve this goal and, secondly, expressing alternative approaches for the goals

achievement. An example is the By problem exploring strategy.

A Section is the main element of the Map model. It represents a combination of two intentions

and a strategy relating these intentions. In other words, a section encapsulates knowledge about an

activity in a triplet <Source intention; Strategy; Target intention>, in other terms, knowledge

corresponding to a particular process step to achieve an intention (the target intention) from a

specific situation (the source intention) following a particular technique (the strategy). A section

is characterized by a code and a description. The Sections code depends on its position on the

Map. The Section description embodies the triplet <Source intention; Strategy; Target intention>.

An example can be mentioned: <Start; By problem exploring; Identify DM Requirements>.

A section of a map can be refined by another map. This is shown through the refinement

relationship between the section and the map. Refinement is an abstraction mechanism by which a

complex assembly of sections at level i+1 is viewed as a unique section at level i. This

relationship introduces levels in the process representation as each map may be represented as a

hierarchy of maps.

Sections in a map are related to each other by three kinds of relationships namely thread, path

and bundle.

• A thread relationship shows the possibility for a target intention to be achieved in several

ways from the same source intention. Each of these ways is expressed as a section in the

map.

• A path relationship establishes a precedence relationship between sections. For a section

to succeed another, its source intention must be the target intention of the preceding one.

• A bundle relationship shows the possibility for several sections having the same source

and target intentions to be mutually exclusive.

A Map is graphically presented as a directed diagram, where intentions are nodes and

strategies are edges, and each section corresponds to two nodes related to each other by an edge

(See Fig. 7). The directed nature of this diagram shows the precedence links between intentions.

An edge enters a node if its associated strategy can be used to achieve the target intention (the

given node).

Figure 7. Map Model Graphical Representation.

An example of a map is given at Fig. 8.

Figure 8. Map Example.

This map contains three intentions, namely: Start, Identify DM Requirement, and Stop. There

are four strategies: By problem exploring, By variability exploring, Tool-based strategy, and By

expertise which correspond to the four sections:

• <Start; By problem exploring; Identify DM Requirements>;

• <Start; By variability exploring; Identify DM Requirements>;

• <Identify DM Requirements; Tool-based strategy; Stop>;

• <Identify DM Requirements; By expertise; Stop>.

Each map is completed by a set of guidelines that help engineers in navigating through the

map. There are three types of guidelines: simple, tactical and strategic. A simple guideline may

give informal content advice on how to proceed in handling the situation in a narrative form. A

tactical guideline is a complex guideline, which uses a tree structure to link its sub-guidelines. A

strategic guideline is a complex guideline which shows that a section of a map can be refined by

another map. This relationship implies that each map may be represented as a hierarchy of maps.

The MAP model defines the process through the combination of observable situations in

which a certain number of specific intentions can be achieved. The work to be made is described

in the process as depending on both situation and intention. In other words, it depends on the

context in which a method engineer must act at a given point in time. By modelling intentions

and the ways (strategies) to reach them, the process has the ability to represent the cognitive

Intention

Strategy

Section

Identify DM

Requirements

By problem

exploring

Start
Identify DM

Requirements

By problem

exploring

By variability

exploring

By problem

exploring
Tool‐based

strategy

By expertise

StopStart
Identify DM

Requirements

context as defined by Bunt. Moreover, by relating method service (Rolland 2008) (or method

component (Ralyté, Deneckère & Rolland 2003)) to a section, Rolland extends the context

expressiveness of the MAP to the semantic context of Bunt. This approach allows identifying

several context aspects. More precisely, this model includes a set of guidelines which help an

engineer navigate through the process model. The navigation is carried out by arguments that

allow the engineer to choose the adapted variant within the process model. These arguments

express the context of a given process model.

3.3.2. Contextualization Map

The Map model is used in our approach for modeling the contextualization process (See Fig. 9).

This process includes two possible ways to define the context: top-down or bottom-up. By the

top-down approach, the engineer defines the method context and then instantiate it for each

method component. By the bottom-up approach, the engineer specifies the contexts of all method

components and assemblies them into the method context.

Both method and method component contexts can be defined following two strategies: By

deduction and By generation. It depends on the characteristic type. The generic characteristics

are deduced from the generic context typology and the specific ones are generated from method

description. These strategies could be applied as many times as possible characteristics exist.

Figure 9. Contextualization Map.

This MAP has two main intentions: Define method context and Define method component

context. The achievement of these intentions implies the definition of the context characteristics

set for method or for method components respectively. The definition of method components

contexts includes also the attribution of values to the defined characteristics.

The contextualization Map includes eight sections, as shown in Table 9.

Start

Stop

Define

method

context

Define method

component

context

By assembly

By instantiation

By generation

By deduction

By generation

By deduction

By completeness

By completeness

S1

S2

S3

S4

S5

S6

S7

S8

Table 9. Contextualization Map Sections.

Section <Source intention, Strategy, Target intention >

S1 <Start, By deduction, Define method context>

S2 <Start, By deduction, Define method component context>

S3 <Start, By generation, Define method context>

S4 <Start, By generation, Define method component context>

S5 <Define method context, By instantiation, Define method component context>

S6 <Define method component context, By assembly, Define method context>

S7 <Define method context, By completeness, Stop>

S8 <Define method component context, By completeness, Stop>

All these sections are explained below. Operators are defined for each section in order to

indicate how to proceed for carrying out its execution.

<Start, By deduction, Define method context>. The generic characteristics deduction is

based on the context typology. This section gives a selection of characteristics carried out by the

IS method engineer. The result of this strategy is a sub-set of generic characteristics available for

a given project. The corresponding operator is:

Select Context Characteristic ()

<Start, By deduction, Define method component context>. This section includes the

selection of characteristics form generic typology like the previous one and includes furthermore

the attribution of values to these characteristics. The result of this strategy is a sub-set of generic

characteristics available for a given project with corresponding values. Two following operators

are applied consecutively:

Select Context Characteristic ()

Attribute a Value to Context Characteristic ()

<Start, By generation, Define method context>. The specific characteristics generation is

based on the method description. The method engineer defines them by analyzing different

aspects which are organized into four facets: intentional, satisfaction, decisional and internal.

This section includes four operators. Each of the following operators is applied depending on the

corresponding characteristic’s facet:

Analyze Method Goal ()

Measure Method Satisfaction ()

Analyze Method Argumentation ()

Measure Method Characteristics ()

<Start, By generation, Define method component context>. The definition of specific

characteristics for method components context is the same as for method context (the previous

section) but also requires the attribution of characteristics values. This section uses the same four

operators and adds another one that deals with the attribution of values to the characteristics.

This last one is applied after each of the first four operators for defining concrete values of the

identified specific characteristics.

Analyze Method Goal () [for intentional facet]

Measure Method Satisfaction () [for satisfaction facet]

Analyze Method Argumentation () [for decisional facet]

Measure Method Characteristics () [for internal facet]

Attribute a Value to Context Characteristic () [for all facets]

<Define method context, By instantiation, Define method component context>. The

context characteristics instantiation is common for both characteristics types and is applied in the

top-down approach. This section allows defining a sub-set of generic and specific method

characteristics with an associated value for each method component separately. Several functions

may be applied (sum, maximum, minimum, average, weighted sum, and so on) for attributing

values to the method context. This section contains two operators applied consecutively:

Retain Context Characteristic ()

Attribute a Value to Context Characteristic ()

<Define method component context, By assembly, Define method context>. In the case of

the bottom-up approach, the strategy By assembly follows the definition of the method

component context By deduction or By generation. The method engineer groups method

components characteristics together. As a result, the method context includes all characteristics

of its components contexts. The application of this strategy allows also defining characteristics’

values for the method context. This section is carried out by the following operator:

Group Characteristics ()

Attribute a Value to Context Characteristic ()

<Define method context, By completeness, Stop> and <Define method component

context, By completeness, Stop>. These sections are the same in both top-down and bottom-up

approaches and include verification of completeness and coherence of the described context. The

associated operator is:

Verify Context Completeness ()

All these operators are resumed in the Table 10.

Table 10. Operators’ Description.

Operators Description

Select Context

Characteristic ()

Helps to select each of the pertinent characteristics of the context.

Attribute a Value to

Context Characteristic ()

For each characteristic selected, a value corresponding to the project

context has to be defined.

Analyze Method Goal () Helps to define the characteristics of the intentional facet which concerns

the method intentions (the method goals).

Measure Method

Satisfaction ()

Helps to measure the satisfaction degree on the results obtained by the

engineer and concerns the satisfaction facet.

Analyze Method

Argumentation ()

The decisional facet needs this operator in order to describe a decision-

making situation with the definition of the arguments to take into account

in the DM process.

Measure Method This operator is used to give values to the characteristics associated with

Characteristics () the specific project management.

Retain Context

Characteristic ()

Helps to define a subset of characteristics (generic or specific

characteristics) and to give them values adapted to the project.

Group Characteristics () This operator allows to group all the characteristics together in the same

set which corresponds to the context.

Verify Context

Completeness ()

Helps to study the completeness and the coherency of the context set of

characteristics.

4. APPLICATION: THREE CASES STUDIES

In this section, we illustrate our proposal by applying the contextualization methodology to three

cases: scenario conceptualization, project portfolio management and decision-making.

We use the Map model for representing methods and for organizing method components into

methods in our examples. The key concept of a Map is the notion of Section. When dealing with

methods modeled by maps, each method component is represented by a map section. Thus, each

Map section is linked to a particular method component, as shown in Fig. 10.

Figure 10. Section and Method Component Correspondence.

Each case study describes a particular map organizing method components. We then show

how the engineer may use the contextualization map in order to create the context of the method/

components.

4.1. Case Study #1: Scenario Conceptualization

4.1.1. Case Study Description

The first example is based on the map defined in the Crews-L’écritoire approach (Ralyté,

Rolland, Plihon &Ralyté 1999). This map is given at Fig. 11.

Method

MethodComponent

Map

Section

1..*

*

refines

1

0..1

is_represented_by

Figure11. Crews-L’écritoire Approach Map (CL Map).

This map was created to support the elicitation of functional system requirements in a goal-

driven manner and to conceptualize them using textual devices such as scenarios or use cases. It

provides guidelines to discover functional system requirements expressed as goals and to

conceptualize these requirements as scenarios describing how the system satisfies the

achievement of these goals. This map contains three main intentions, namely ‘Elicit a Goal’,

‘Write a Scenario’ and ‘Conceptualize a Scenario’. There are twelve separate sections which

allow the engineer to navigate through the map. Each of these sections is expressed as a specific

component which is saved into a repository.

4.1.2. Contextualization Process

The engineer executes the contextualization map. He decided to select the top-down approach of

the contextualization process. This specific way to navigate through the map will guide the

engineer first through the definition of the method characteristics and then through the definition

of the components ones. Fig. 12 shows the path used in the navigation through the map in order

to define the method components contexts.

Figure 12. Path used in the Contextualization Map for the CL Map Case Study.

Start

Elicit a Goal

Write a

Scenario
Conceptualize

a Scenario

Stop

Initial goal

identification strategy

Linguistic strategy

Template driven

strategy

Goal structure

driven strategy

Refinement

discovery

strategy
Composition

Discovery

strategy
Alternative

Dicovery

strategy

Template driven

strategy

Free prose

strategy

Manual strategy

Computer supported strategy
Completness

strategy

S1

S2
S3

S4

S5
S6

S7

S8

S9

S10

S11

S12

Start

Stop

Define

method

context

Define method

component

context
By instantiationBy deduction

By completeness
S1 S5

S8

This selected path contains three sections of the Contextualization Map and may be resumed

on the three following steps:

1. Definition of the method Context (S1),

2. Definition of the method components contexts (S5), and

3. Verification of the context completeness (S8).

First step (S1: Definition of the method context). The engineer had studied the set of possible

generic characteristics to specify the context of its method. He has applied the operator Select

Context Characteristic () in order to define a sub-set of generic context characteristics according

to the given project. In this example, he has selected three indicators: Expertise degree,

Formality degree and Duration (See Table 11).

Table 11. Generic facet values.

Characteristic Value domain

Human facet

Expertise degree 3-grade scale

Application domain facet

Formality degree 3-grade scale

Organisational facet

Duration REAL

Second step (S5: Definition of the method components context). The method context defined

previously is instantiated in this step for each component (each section of the CL map). It means

that a value has to be affected to each characteristic. The following operators are applied to each

method characteristic: Retain Context Characteristic () and Attribute a Value to Context

Characteristic (). Table 12 shows the values of these criteria applied to each section of the CL

map.

Table 12. CL map indicators

Section
Expertise

degree

Formality

degree
Duration

S1 <Start; Initial goal identification strategy; Elicit a goal> 1 1 10 mn

S2 <Elicit a goal; Goal structure driven strategy; elicit a goal> 1 2 15 mn

S3 <Elicit a goal; Template driven strategy; elicit a goal> 1 3 15 mn

S4 <Elicit a goal; Linguistic strategy; elicit a goal> 1 1 15 mn

S5 <Elicit a goal; Template strategy; write a scenario> 2 3 10 mn

S6 <Elicit a goal; Free prose strategy; write a scenario> 1 1 15 mn

S7 <Write a scenario; Manual strategy; conceptualize a

scenario>

2 1 15 mn

S8 <Write a scenario; Computer supported strategy;

conceptualize a scenario>

1 3 5 mn

S9 <Conceptualize a scenario; Alternative discovery strategy; 1 1 20 mn

Elicit a Goal>

S10 <Conceptualize a scenario; Composition discovery strategy;

Elicit a Goal>

2 2 20 mn

S11 <Conceptualize a scenario; Refinement discovery strategy;

Elicit a Goal>

2 2 20 mn

S12 <Conceptualize a scenario; Completeness strategy; Stop> 1 1 5 mn

Third step (S8: Verification of the context completeness). The engineer has decided that the

identified context characteristics are sufficient by applying the operator Verify Context

Completeness ().

4.2. Case study #2: Project Portfolio Management

4.2.1. Case Study Description

The second example deals with Information Technology Project Portfolio Management (IT-

PPM). The Fig. 13 shows the IT-PPM intentional map which describes the ways to manage a

project within a portfolio.

Figure 13. IT-PPM Map.

This Map is a refinement of the section < Define Risks, By Project Planning, Align IT and

Business Process > of the map dealing with IT governance presented in (Claudepierre & Nurcan

2009). This map contains three main intentions: ‘Identify project’, ‘Evaluate project’, and

‘Prioritize project’ and ten associated sections. The related components are saved into a method

base which includes their description and methodological guidelines for their application.

4.2.2. Contextualization Process

Start

Stop

Identify

project

Evaluate

project

Prioritize

project

By project portfolio

completion

By applying function

over criteria

By ad‐hoc

classification

By controlling goal

achievement

By modulating project

development

By requirement consideration

By canceling project

portfolio

By goals‐oriented

criteria identification

By lack of goals‐

coverage

By project

completeness

7

9

1

2

3

4

5

6

8

10

The engineer has selected the top-down approach of the contextualization process. It guides the

engineer through the definition of the method characteristics before the definition of method

component characteristics. Fig. 14 shows the path used in the navigation through the

contextualization map in this particular case study.

Figure 14. Path used in the Contextualization Map for the IT-PPM Case Study.

This path contains four sections of the Contextualization Map that we represent within the

three following steps:

1. Definition of the method Context (S1 and S3),

2. Definition of the method components contexts (S5), and

3. Verification of the process completeness (S8).

First step (S1, S3: Definition of Method Context). This step contains the execution of two

sections of the Contextualization Map: S1 and S3.

Definition of the generic characteristics (S1). The engineer uses the characteristics

presented in Table 4 and Table 5 as generic characteristics to specify the context of the method.

The engineer has applied the operator Select Context Characteristic () in order to define a sub-set

of generic context characteristics according to the given project. He has selected three generic

characteristics for this example: Expertise degree, Expert role and Application type (Table 13).

Table 13. Generic Characteristics.

Characteristic Value domain

Human facet

Expertise degree {low, normal, high}

Expert role {tester, developer, designer, analyst}

Application domain facet

Application type {intra-organization application, inter-organization

application, organization-customer application}

Definition of the specific characteristics (S3). The engineer also uses specific context

characteristics (cf. Table 14). This specific context is depicted by the constraints of the business

environment (the design situation), the intention of the designer and the strategy for reaching the

intention. So, the three operators were applied to identify the specific characteristics. Analyze

Method Goal () is used to identify the Intention which is related to the intentional type of specific

characteristic. Measure Method Satisfaction () allows defining the Situation in the Satisfactional

Start

Stop

Define

method

context

Define method

component

context
By instantiationBy deduction

By completeness
S1 S5

S8

By generation

S3

facet (as it describes the satisfaction degree of the previous intention). Finally, Analyze Method

Argumentation () defines the Strategy in the decisional facet of the specific characteristic.

Table 14. Specific Characteristics.

Characteristic Value domain

Intentional facet

Intention TEXT

Satisfactional facet

Situation TEXT

Decisional facet

Strategy TEXT

Second step (S5: Definition of Method Components Context). The method context defined

at the previous step is now instantiated for each component. A value is affected to each

characteristic in order to help the case process execution guidance. The following operators are

applied to each method characteristic: Retain Context Characteristic () and Attribute a Value to

Context Characteristic (). The results are presented in Table 15.

Table 15. Specific Characteristics Instantiation.

Section
Expertise

degree

Expert

role

Appli.

Type

Situation Intention Strategy

S1 <Start; By goals-oriented criteria

identification; Identify project>

Normal Analyst

designer

Intra-

Org.

Problem

statement

Identify

project

By requirement

consideration

S2 <Identify project; By ad-hoc

classification; Prioritize project>

Low Analyst

designer

Intra-

Org.

Project

identified

Prioritize

project

By ad-hoc

classification

S3 <Identify project; By goals-oriented

criteria identification; Evaluate project>

High Analyst

designer

Intra-

Org.

Project

identified

Evaluate

project

By goals-oriented

criteria

identification

S4 <Prioritize project; By modulating

project development; Prioritize project>

High Designer Intra-

Org.

Project

prioritized

Prioritize

project

By modulating

project

development

S5 <Prioritize project; By cancelling

project portfolio; Stop>

Low Designer Intra-

Org.

Project

prioritized

Stop By canceling

project portfolio

S6 <Prioritize project; By project portfolio

completion; Stop>

Low Designer Intra-

Org.

Project

prioritized

Stop By project

portfolio

completion

S7 <Prioritize project; By controlling goal

achievement; Evaluate project>

Low Designer Intra-

Org.

Project

prioritized

Evaluate

project

By controling goal

achievement

S8 <Evaluate project; By applying function

over criteria; Prioritize project>

Normal Analyst Intra-

Org.

Project

evaluated

Prioritize

project

By applying

function over

criteria

S9 <Evaluate project; By project

completeness; Stop>

Low Designer Intra-

Org.

Project

evaluated

Stop By project

completeness

S10 <Evaluate project; By lack of goals-

coverage; Identify project>

Normal Analyst Intra-

Org.

Project

evaluated

Identify

project

By lack of goal

coverage

Third step (S8: Verification of the process completeness). The engineer has decided that the

identified context characteristics are sufficient to allow a satisfying guidance through the

portfolio project management by the operator Verify Context Completeness () application.

4.3. Case Study #3: Decision-Making

4.3.1. Case Study Description

The third example allows defining context for the Decision-making (DM) generic process. The

map model of the DM generic process (Kornyshova 2010) is given at Fig. 15.

Figure 15. DM Generic Process Map (DM Map).

The DM Method Family describes the generic DM process including the main activities used

for DM. It can be used each time an IS engineer meets a DM situation. The DM map is a

collection of DM method components organized into a generic process (a kind of multi-method)

for their easier usage in practice. DM components represent detailed guidelines for DM activities

associated to the specific context of their use. The DM map contains four main intentions:

‘Define Alternatives’, ‘Define Criteria’, ‘Evaluate Alternatives’, and ‘Make Decision’ and

twenty six sections, or DM method components.

By process

exploring

By product

exploring

By consequences

analysis By alternatives

description analysis

Make

DecisionBy expertise

By ‘’From

scrach’’

strategy

Stop

By method‐

based approach

By prescription

By preference

analysis

By measuring

By estimation

By goal analysis

By validation

Start
By elimination

By

elimination

By weighting

By domination

analysis

By preference

analysis

By quantifying

By normalizing

By fuzzy values

Evaluate

Alternatives

By using

arguments

By addition

Define

Alternatives

By

addition

By preferences

analysis

Define

Criteria

S1

S2
S3 S4

S26

S22
S21

S20

S19

S6
S5

S7 S12

S10

S9

S11 S13

S15

S14

S17

S16

S23

S24

S18

S25

By predefined

list exploring
S8

4.3.2. Contextualization Process

The engineer executes the contextualization map and selects the bottom-up approach of the

contextualization process as he is able to qualify each DM component. In this case, the engineer

specifies the contexts of all method components and assemblies them into the method context.

The used path in the Contextualization Map is shown at Fig. 16.

Figure 16. Path used in the Contextualization Map for the DM Map Case Study.

This selected path contains four sections of the Contextualization Map and may be resumed

on the three following steps:

1. Definition of the method components contexts (S2 and S4),

2. Definition of the method Context (S6), and

3. Verification of the context completeness (S7).

First step (S2, S4: Definition of Method Component Context). This step contains the

execution of two sections of the Contextualization Map: S2 and S4.

Definition of the generic characteristics (S2). The engineer uses the characteristics

presented in Table 4 and Table 5 as generic characteristics to specify the context of the DM

components. He has applied the operator Select Context Characteristic () in order to define a

sub-set of generic context characteristics according to the given project. The engineer has

selected two generic characteristics: Expertise degree, and Complexity degree (See Table 16).

Table 16. Generic characteristics.

Characteristic Value domain

Application domain facet

Complexity degree 3-grade scale

Human facet

Expertise degree 3-grade scale

Then, the engineer attributes values to each DM method components using the Attribute a

Value to Context Characteristic () operator (See Table 18).

Start

Stop

Define

method

context

Define method

component

context
By assembly

By generation

By deduction

By completeness

S2

S4

S6

S7

The engineer has attributed values to twenty three DM components. The other three

components (N/E – not evaluated values in Table 18) cannot be evaluated according to these

characteristics as they depend significantly on the given situation.

Definition of the specific characteristics (S4). The engineer also uses specific context

characteristics (cf. Table 17) leading him to qualify method components. An operator was

applied to identify the specific characteristics: Analyze Method Goal () for identifying the

Intention.

Table 17. Specific Characteristic.

Characteristic Value domain

Intentional facet

Intention TEXT

The engineer also attributes an intention to each DM method components using the Attribute

a Value to Context Characteristic () operator (See Table 18).

Table 18. Specific Characteristics Instantiation.

Section
Complexity

degree

Expertise

degree
Intention

S1 <Start; By process exploring; Define alternatives> 2 2 Define alternative list

S2 <Start; By product exploring; Define alternatives> 2 2 Define alternative list

S3 <Define alternatives; By elimination; Define

alternatives>

1 1 Refine alternative list

S4 <Define alternatives; By addition; Define alternatives> 1 1 Refine alternative list

S5 <Define alternatives; By alternatives description analysis;

Define criteria>

2 1 Define criteria list

S6 <Define alternatives; By consequences analysis; Define

criteria>

2 1 Define criteria list

S7 <Define alternatives; By goal analysis; Define criteria> 1 1 Define criteria list

S8 <Define alternatives; By predefined list exploring;

Define criteria>

1 1 Define criteria list

S9 <Define criteria; By elimination; Define criteria> 1 2 Refine criteria list

S10 <Define criteria; By addition; Define criteria> 1 2 Refine criteria list

S11 <Define criteria; By weighting; Define criteria> 2 1 Define relative

importance of criteria

S12 <Define alternatives; By preferences analysis; Evaluate

alternatives>

2 1 Evaluate alternatives

S13 <Define criteria; By measuring; Evaluate alternatives> 2 1 Evaluate alternatives

S14 <Define criteria; By estimation; Evaluate alternatives> 2 1 Evaluate alternatives

S15 <Define Criteria; By preferences analysis; Evaluate

alternatives>

2 1 Evaluate alternatives

S16 <Evaluate alternatives; By domination analysis; Evaluate

alternatives>

2 2 Discard dominated

alternatives

S17 <Evaluate alternatives; By preferences analysis; Evaluate

alternatives>

2 2 Refine alternative

evaluations

S18 <Evaluate alternatives; By quantifying; Evaluate

alternatives>

1 2 Quantify alternative

values

S19 <Evaluate alternatives; By normalizing; Evaluate

alternatives>

1 2 Normalize alternative

values

S20 <Evaluate alternatives; By fuzzy values; Evaluate

alternatives>

3 3 Define fuzzy values of

alternatives

S21 <Define alternatives; By using arguments; Make

decision>

N/E N/E Make decision

S22 <Define alternatives; By “From scratch” strategy; Make

decision>

N/E N/E Make decision

S23 <Evaluate alternatives; By method-based approach;

Make decision>

3 3 Make decision

S24 <Evaluate alternatives; By expertise; Make decision> N/E N/E Make decision

S25 <Make decision; By prescription; Stop> 1 2 Prescribe decision

S26 <Define alternatives; By validation; Stop> 1 3 Validate decision

Second step (S6: Definition of the method context). In order to define the context

characteristics of the DM method, the engineer uses the Group Characteristics () operator. For

this, he takes all characteristics, specified for all components. Then he applies the Attribute a

Value to Context Characteristic () operator for evaluating the method context characteristics.

In order to attribute values to the method context (See Table 19), he chooses the maximal

value for the characteristics Complexity degree and Expertise degree, and for intention, he takes

the main intention which is the Make Decision intention (This intention is on the top of the

taxonomy of the DM intentions.).

Table 19. Method Context Values.

Characteristic Value

Complexity degree 3

Expertise degree 3

Intention Make Decision

Third step (S8: Verification of the context completeness). The engineer has decided that the

identified context characteristics are sufficient by applying the operator Verify Context

Completeness ().

4.4. Lessons Learned

The three case studies have shown that the contextualization approach can be used in various

areas of information system engineering.

Closely related to the method at hand, it requires the strong degree of the engineer

commitment into methodological processes. The engineers’ intervention is highly required at all

steps of the contextualization process. In addition, it allows taking into account the specificity of

each studied method, that is to say the context-awareness. The last one is one of the most

important issues in the current science of IS engineering. In this manner, these three examples

show how the contextualization approach can contribute to resolve this issue.

The main usages of the contextualization results are the following: a more simple navigation

through the map (in the case of Scenario conceptualization); a better ‘context-aware’ selection of

method components (in the case of PPM); an easier customization of the generic process (in the

case of DM); and, finally, means for identifying situations in which a given component is useful

(three case studies). For instance, the Weighting DM method component (See Fig. 2) is useful in

the situation characterized by the level 2 of complexity (normal), requiring the level 1 of

expertise (low), and when the goal is to define the relative importance of criteria.

However, these case studies have made obvious that it is more easily to use the generic

characteristics of context then to try to find some specific characteristics. It means that the

operators for identifying specific characteristics must be enhanced.

5. RELATED WORKS

The current work was motivated by a need to formalize an approach for specifying context of

methods and method components. It is related to the following fields of information system

engineering: situational method engineering (SME), decision-making in information system

engineering, and process variability.

SME approaches. Several works has been done to define the concept of method component

in order to obtain flexible methods. The different kind of method components present in the

literature are the method fragment (Brinkkemper 1996), the method chunk (Ralyté, Deneckère &

Rolland 2003), the method component (Wistrand & Karlsson 2004), the OPF fragment

(Henderson-Sellers 2002) and the method service (Guzélian & Cauvet 2007). Some details on

these method components are given in section 2.2. In this field, the paper contributes to the

methodology of identifying and evaluating method context characteristics.

Decision-making methods in ISE. With regard to IS engineering, the issue of DM has

already been explored with respect to requirements engineering [NgoTheAl2005], to method

engineering [Aydin2006], and, more generally, to systems engineering [Ruhe2003]. Ruhe

emphasizes the importance of DM in SE along the whole life cycle [Ruhe2003]. However, DM

in IS engineering has several lacks: (i) decisions are not formalized in terms of alternatives and

criteria, their consequences are not analyzed, decisions are not transparent, (ii) at intuitive and ad

hoc decisions overshadow method-based ones, (iii) and there is no tool which covers a complete

DM process even if DM tools exist. To overcome these drawbacks, some studies are made, for

instance a generic DM process is proposed (Kornyshova 2010) and an ontology of the DM

concepts is elaborated (Kornyshova & Deneckère 2010).

Process variability and the MAP process model. Variability has proved to be a central

concept in different engineering domains to develop solutions that can be easily adapted to

different organizational settings and different sets of customers at a low price. The MAP

formalism has a high level of variability as it is expressed in an intentional manner through goals

and strategies. As a high level of variability means a high number of variation points, a process

customization is then required to offer a better guidance. In a parallel way to the Product lines

concept which has appeared within the management of variability and customization of products,

a new concept has arise to represent the processes that may be customized to a given project: the

Process lines (Deneckère & Kornyshova 2010a). In (Deneckère & Kornyshova 2010b), Maps are

considered as Process lines and a typology of characteristics is used to configure the line in order

to obtain a process adapted to the project at hand.

6. DISCUSSION AND CONCLUDING REMARKS

The situational method engineering field aims at considering methods as a set of method

components. Different approaches have been defined to consider this concept of method

component (method fragment, method component, method services, method chunk, and OPF

fragment). Each of these approaches mainly focus on the definition of what is a method

component and how to assemble them in order to create a new method adapted to the project at

hand. All of these approaches hint the fact that the notion of context has to be used to enhance

the method component retrieving as they use several context related notions (interface,

contingency factors, development situation, and so on). However, the process of how to identify

and evaluate the method context is not suggested and our proposal is (i) to give a strong

definition of a method component context and (ii) to offer a contextualization process which will

help engineers to define the method components context with ease.

Strong definition of a method component context. We have studied the literature in order to

define the criteria that may be used to characterize the situation in which method components

may be used. This leads us to define a typology of characteristics which we have structured in

different facets (each considering a special view of a project). We then related these

characteristics to the method component concepts.

Contextualization process. We have identified two possible ways to use these characteristics

for defining context (the top-down and the bottom-up approaches) in order to propose a

contextualization process that may be adapted to several situations. We modeled this process

with the MAP formalism in order to keep a high level of flexibility in the process utilization.

This proposal can be applied in different IS engineering situations such as the selection of a

component for enhancing the existing IS engineering method (for instance, extension-based

approaches) or a selection of several components for constructing a new one (for instance,

assembly-based approaches).

We have applied the proposed model on three case studies as follows.

• Scenario Conceptualization. This case is based on a well know process used on the

project ‘Crews L’Ecritoire’. The case study use the contextualization process to help the

engineer to navigate through the process and select the right components following its degree of

expertise, the duration of each performed component and its formality degree (which are generic

characteristics of the typology).

• IT Project Portfolio Management. This case study contributes to the study of the

relatively unexplored domain of IT governance from the SME point of view. The engineer

selects more characteristics than in the first case study as he chooses also specific characteristics

(characteristics to apply on a specific process model, in this case the MAP process model).

• Decision making. The contribution of this case study is twofold: the validation of the

contextualization methodology and the application of the SME principles to a field issue from

the operational research. Firstly, the DM case study has shown how to describe the context of

DM components using three characteristics (complexity degree, expertise degree, and intention)

and to identify the method context from the context of its components. Secondly, this case has

demonstrated that the SME approach (identification of method components and their

contextualization) is successfully applied to the DM methods for their further utilization in the IS

engineering field.

Our future work aims at: (i) enhancing the approach for a more simple identification of

specific context characteristics; (ii) ensuring the adaptability of methods with regards to the

context specificities; and (iii) proposing a method for a formalized selection of method

components following their characteristics values.

REFERENCES

Bessai K., Claudepierre B., Saidani O. & Nurcan S. (2008). Context-aware business process evaluation

and redesign. In proceedings of the international workshop BPMDS'08.

Bouquet P., Ghidini Ch., Giunchiglia F. & Blanzieri E. (2003) Theories and uses of context in knowledge

representation and reasoning. Journal of Pragmatics, 35(3).

Bradley N. A. & Dunlop M. D. (2005). Toward a multidisciplinary model of context to support context-

aware computing. Human-Computer interaction, Lawrence Erlbaum Associates.

Brinkkemper S. (1996). Method engineering: engineering of information systems development method

and tools. Information and Software Technology Journal, 38:7.

Bunt H. (1997). Context and dialogue control. In Proceedings of CONTEXT’97.

Claudepierre B. & Nurcan S. (2009). ITGIM: An intention driven approach for analyzing the IT

governance requirements. In proceedings of the international Workshop on Requirements, Intentions and

Goals in Conceptual Modeling.

Coutaz J. & Rey G. (2002). Recovering foundations for a theory of contextors. In proceedings of the 4th

ICCADUI, Valenciennes, France.

Dey A., Abowd G. & Salber, D. (2001). A conceptual framework and toolkit for supporting the rapid

prototyping of context-aware applications, Human-computer Interaction, 16 2-4 (Special issue on

context-aware computing), (pp. 97–166).

Deneckère R. , Iacovelli A. , Kornyshova E. & Souveyet C. (2008). From method fragments to method

services. In proceedings of the Evaluation of Modeling Methods in Systems Analysis and Design

conference (EMMSAD’08), Montpellier, France.

Deneckère R. & Kornyshova E. (2010a) La variabilité due à la sensibilité au contexte dans les processus

téléologiques, Informatique des Organisations et Systèmes d'Information et de Décision (INFORSID),

Marseille, France (In French).

Deneckère R. & Kornyshova E. (2010b). Process Line Configuration: an Indicator-based Guidance of the

Intentional Model MAP, Evaluation of Modeling Methods in Systems Analysis and Design (EMMSAD),

Hammamet, Tunisie.

Drury J. L. & Scott S. D. (2008). Awareness in unmanned aerial vehicle operations. International C2

journal, Geoffrey N. Hone, 2:1.

Firesmith D. & Henderson-Sellers B. (2001). The OPEN Process Framework. An Introduction, Addison-

Wesley.

Gonzales-Perez C. (2007). Supporting situational method engineering with ISO/IEC 24744 and the work

product tool approach. In proceedings of the International IFIP WG8.1 Conference ME 07, Springer,

Geneva, Switzerland.

Gu T., Wang X.H., Pung H.K. & Zhang D.Q. (2004), An Ontology-based Context Model in Intelligent

Environments. In proceedings of Communication Networks and Distributed Systems Modeling and

Simulation Conference, (pp 270-275).

Guzélian G. & Cauvet C. (2007). SO2M : Towards a service-oriented approach for method engineering.

In proceedings of the international conference IKE'07, Las Vegas, Nevada, USA.

Harmsen F. (1997). Situational method engineering. Moret Ernst & Young.

Harmsen A.F., Brinkkemper J.N. & Oei J.L.H. (1994). Situational method engineering for information

systems project approaches. In proceedings of the international IFIP WG8. 1 Conference in CRIS series :

"Methods and associated Tools for the Information Systems Life Cycle" (A-55), North Holland (Pub.).

Henderson-Sellers B. (2002). Process meta-modelling and process construction: examples using the OPF.

Ann. Software Engineering, 14(1-4).

Iacovelli A., Souveyet C. & Rolland C. (2008). Method as a service (MaaS). In proceedings of the

International Conference on Research Challenges in Information Science (RCIS’08), Marrakech,

Morocco, (pp. 371 – 380).

Karlsson F. & Agerfalk P.J. (2004). Method configuration: adapting to situational characteristics while

creating reusable assets. Information and Software Technology 45, (pp 619-633).

Kirsch Pinheiro M., Vanrompay Y. & Berbers Y. (2008). Context-aware service selection using graph

matching. In proceedings of ECOWS 2008, vol. 411.

Kornyshova E., Deneckère R. & Salinesi C. (2007). Method chunks selection by multicriteria techniques:

an extension of the assembly-based approach. In proceedings of the International IFIP WG8.1 Conference

ME 07, Springer, Geneva, Switzerland.

Kornyshova E. & Deneckère R. (2010). Decision-Making Ontology for Information System

Engineering", International Conference on Conceptual Modeling (ER), Vancouver, Canada.

Mirbel I. (2008). Contributions à la modélisation, la réutilisation et la flexibilité des systèmes

d’information . HDR thesis, Nice University.

Mirbel I. & Ralyté J. (2006). Situational method engineering: combining assembly-based and roadmap-

driven approaches. In proceedings of the international conference Requirements Engineering (RE’06),

11(1), (pp. 58–78).

Mirbel I. & de Rivieres V. (2002) Adapting Analysis and Design to Software Context : The jecko

Approach, In 8
th

 International Conference on Object Orirented Information Systems.

Nehan Y. R. & Deneckère R. (2007). Component-based situational methods - A framework for

understanding SME. In proceedings of the International IFIP WG8.1 Conference ME’07, Springer,

Geneva, Switzerland.

Prat N. (1997). Goal formalisation and classification for requirements engineering. Proceedings of the

Third International Workshop on Requirements Engineering: Foundations of Software Quality

REFSQ’97, Barcelona (pp. 145-156).

Ralyte J. (2001). Method chunks engineering, PhD thesis, University of Paris 1-Sorbonne.

Ralyté J., Deneckere R. & Rolland C. (2003). Towards a generic model for situational method

engineering. In proceedings of the international conference CAISE’03, Springer Verlag, Velden, Austria.

Ralyté J. & Rolland C. (2001a). An assembly process model for method engineering. In proceedings of

the International Conference on Advanced information Systems Engineering (CAISE’01), Interlaken,

Switzerland.

Ralyté J. & Rolland C. (2001b). An approach for method reengineering. In proceedings of the 20th

International Conference on Conceptual Modeling (ER’01), Yokohama, Japan, November 2001. H.

Kunii, S. Jajodia, A. Solvberg (Eds.), LNCS 2224, Springer-Verlag, (pp.471-484).

Ralyté, J., Rolland, C. & Plihon, V. (1999) Method Enhancement with Scenario Based Techniques.

Proceedings of the 11th International Conference on Advanced Information System Engineering

(CAISE’99), Heidelberg, Germany, M. Jarke, A. Oberweis (Eds.), LNCS 1626, Springer-Verlag, (pp.

103-118).

Rey G. & Coutaz J. (2002). Le Contexteur : une abstraction logicielle pour la réalisation de systèmes

interactifs sensibles au contexte. IHM’02, (pp. 105-112).

Rolland C. & Cauvet C. (1992). Object-Oriented Conceptual Modelling, CISMOD’92, International

Conf. on Management of Data, Bangalore.

Rolland C., Plihon V. & Ralyté J. (1998). Specifying the reuse context of scenario method chunks. In

proceedings of the international conference CAiSE’98, Pise, Italy.

Rolland C., Prakash N. & Benjamen A. (1999). A multi-model view of process modeling. In proceedings

of the Requirements Engineering international conference (RE’99), Springer-Verlag London Ltd, 4:4.

Rolland C. & Prakash N. (2001) Matching ERP System Functionality to Customer Requirements. In

Procs of the 5th IEEE International Symposium on Requirements Engineering, Toronto, Canada. August

27-31.

Rolland C. (2005). L'ingénierie des méthodes : une visite guidée. E-revue en Technologies de

l'Information (e-TI), Invited Talk.

Rolland C. (2008). Method engineering: “Towards methods as services”. In proceedings of the

International Conference on Software Process (ICSE-ICSP), Springer-Verlag, Leipzig, Germany.

Rosemann M. & Recker J. (2006). Context-aware process design: exploring the extrinsic drivers for

process flexibility. In proceedings of workshops and doctoral consortium in the 18th international

conference on advanced information systems engineering. Luxembourg: Namur University Press., (pp

149-158).

Rosen M. A., Fiore S. M., Salas E., Letsky M. & Warner N. (2008). Tightly coupling cognition:

understanding how communication and awareness drive coordination in teams. International C2 journal,

2:1.

Schilit B., Adams N. & Want R. (1994). Context-aware computing applications. In proceedings of the

IEEE Workshop on Mobile Computing Systems and Applications (WMCSA'94), Santa Cruz, CA, US,

89-101.

Van Slooten K. & Hodes B. (1996), Characterising IS development projects. In proceedings of the IFIP

WG8.1 Conference on Method Engineering.

Wistrand K. & Karlsson F. (2004). Method components: rationale revealed. In proceedings of the

international conference CAISE’04, Springer-Verlag. Riga, Latvia.

APPENDIX

Elena Kornyshova

Elena Kornyshova is a PhD student at the University of Paris 1 Panthéon-Sorbonne (CRI - Centre

de Recherche en Informatique) under the direction of Pr. Colette Rolland and Dr. Rébecca

Deneckère. Her research domains are Method Engineering, Process Engineering, Enterprise

Architecture and Decision-making in Information System Engineering. Her PhD research aims to

propose a Method Engineering approach to improve Decision-making in Information System

Engineering.

Rébecca Deneckère

Rébecca Deneckere is affiliated to the CRI (Centre de recherche en Informatique) at the

university of Paris 1 Panthéon-Sorbonne. Her domain of research is the Method Engineering

field, especially Situational Method Engineering. She is also working on Decision-making in

Information System Engineering . Her last field of research is the processes context-awareness

and the configuration of method lines.

Bruno Claudepierre

Bruno Claudepierre is a PhD student at the University of Paris 1 Panthéon-Sorbonne (CRI -

Centre de Recherche en Informatique) under the direction of Pr. Colette Rolland and Dr. Selmin

Nurcan. His research purposes are focused on Information Systems engineering methods and their

adaptations in order to comply with the new requirements of IT Governance. He usually works

with CRI staff members on connected research areas like Business Process Redesign, Method

Engineering, Business/IT alignment and Information System Design.

In order to access to up to date information about authors, please scan the following codes.

Elena Rébecca Bruno

Kornyshova Deneckère Claudepierre

For scanning abilities, you may install the following barcode scanner software on your

mobile: http://www.lynkware.com/support_devices.php

