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Abstract

This paper presents a model of influence where agents’ beliefs are based on an

objective reality, such as the properties of an environment. The perception of the

objective reality is not direct: all agents know is that the more correct a belief, the more

successful the actions that are deduced from this belief. A pair of agents can influence

eachother when they perform joint action. They are not only defined by individual

beliefs, but also idyosynchratic confidence about their belief - this means that they

are not all willing to engage in an action with agents with a different belief and to be

influenced by them. After exploring the dynamics of our influence and learning system

with agents that have the same confidence, we study heterogenous confidence among

agents. We show here that the distribution of confidence in the group has a huge

impact on the speed and quality of collective learning and in particular that a small

number of overconfident agents can prevent the whole group from learning properly.

keywords: belief dissemination, bounded-confidence, social influence, simulation

agents, Agent-Based Computational Economics

1 Motivation

1.1 A learning model with influence

In this paper we present results of an influence model within a group of agents in

a situation that has not, to the best of our knowledge, been studied before: when

the belief about which agents influence eachother is based on an objective reality. As

a first approximation, we chose to represent the objective reality as an environment

with unchanging characteristics. As we will illustrate, this modelling is well adapted to

represent some elements of the actual environment of humans. This addition implied

that we had to choose a representation of how agents can access the information

about the properties that constitute their belief, and we chose for this an indirect
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representation of ”learning through action” - when acting successfully, an agent tends

to believe that he should not change its belief; when failing, it questions its belief which

might not be that accurate. The constitution of an influence model implies that agents

interact by pair and influence eachother with a potentially heterogenous strength. The

process of learning is such that the action is performed by a pair while only one belief

is used (and hence tested). The success of an action makes the belief that was used re-

inforced for the pair. The agents are heterogenous in their acceptance to act following

someone else’s belief, so we integrate the usual notion of bounded confidence. We then

consider that an interesting point is to study idyosynchratic confidence for individuals,

and show that overconfident agents do not only have difficulties learning themselves

but that they can also deprive others of opportunities to learn.

As a starting point, we consider an environment upon which agents do not have

any impact at the local scale through their action and which is unchanged in the

time-scale of the simulation. For example, one could consider that the environment

is climate, and the representation we give of the environment is an equation about

the evolution of its state, considering current state. The action agents have to choose

could depend on next day climate, and they use one prediction for it - if they succeed,

they think that the equation they used is right and if they fail, they think that the

equation is wrong. Another idea could be farmers who want to share water and have

to dig a well. For this they use their knowledge about where water is situated in

the underground. The reinforcement learning would be the same as the previous one.

The belief that agents have of the environment can be described as parameters that

fit specific representation, based on a common framework (shape of an equation, or

standard map upon which the relevant information are situated).

We choose an environment which properties cannot be directly accessed by agents,

who have to assess their belief through observed results of action because this process

corresponds to what humans actually do: acting to test our believes is our way to

acquire knowledge (MV72).

Our learning is based on an joint action: agents collaborate in actions and influence

eachother. It is linked to the idea that most acquisition of knowledge takes place

through interaction (Mos79). This slighlty complex model, which will be described

later, is such that we can integrate at the same time the experimental aspect of learning

and interactive aspect through social influence. The idea that agents’s confidence has

an impact on their learning is linked to the notion of bounded-confidence which is

common in social influence literature and finds ground in psychological observations

as well, where a large field explores the influence of overconfidence on learning and

performance. In our model, since we had to integrate the ”action phase” in the learning

about the objective reality, we have to re-write the usual algorithm for bounded-

confidence, as is described in section 2.

The main result of our study is that the presence of some very confident agents, who

cannot be influenced by others, slows down the learning of the society as a whole and

can even stop it. One can identify thresholds in the number of overconfident agents,
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that produce different patterns in the simulations. In particular, results depend on the

probability of meeting among agents that can influence each other. For example we

spotted that about 20% of the population of agents that are sensibly more confident

than others is the worst configuration in our model.

The following subsections are meant to justify some of our modelling choices. Then,

in following sections we present the simulation model, describe the dynamics of the

simulation that imply our main result and then make some variation in the parameters

to show the stability and limits of the learning and influence model. We eventually

show how a few over-confident agents can disturb collective learning. This result sug-

gests an interesting interpretation regarding the need for an open-minded population

in a context of complex learning.

1.2 Beliefs and choice of action

In this paper we separate beliefs and preferences as an element of choice for action.

This relies on the most basic model in orthodox thinking in game-theory or decision

theory ((Kre90)). An action (sometimes called optimal strategy) is chosen according

to aims (preferences) and beliefs. An agent that wants to reach an aim has images

about how this aim could be reached, which pushes him to choose an action to reach

it. It is to be noted that with this simple model of decision, two agents who have

opposite preferences and different beliefs can choose the same action to attain their

aim. Following the same logic, two agents with the same aim but different belief can

choose a different actions to attain their aim.

In our setting, we only work on believes and their assessment. In this respect, we

consider that all agents agree on the aim but differ in beliefs, and hence in the choice

of the correct action to perform. This is where a comparison of confidence in one’s

belief has a role to play when a pair of agents decides on an action.

We are in particular interested in drastically separating learning and preferences in

the model because we want to eliminate strategic aspects agents and differences in the

perception of success or failure of the action. Here, agents may think that their beliefs

are wrong if their aim is not achieved, and that it is right if their aim is achieved.

The representation of learning corresponds to agents that conceive their actions as

experiments, but who do not accumulate an individual memory of their past beliefs

and the successes of their past actions. In that sense we position closer to ”social

influence” literature (agents instantly forget their previous belief at each step) than

learning literature (where the relevance of different belief can be compared over time).

1.3 Influence

Social influence has been studied quite extensively by simulation and can be based on

three usual representations.

In a very popular approach, the one that is developed by phycisists, agents’ opinion

can take only two values: 0 or 1. This enables society to be conceived as a set of
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positively and negatively charged molecules in a network, that influence eachother.

Ising fields are the calculating device of the evolution of the agents ((Gal97)). What

can be proven formally in this type of system is, for example, the great influence of the

distribution of initial opinions (SWS00), the topology of the network (CR05) (Sta05),

as well as an exogenous informational shock in the system (FS06). One can discuss

the relevance of this framework for the representation of opinions, since the value of

the diffused parameter can take only two values: 0 or 1. In work that are maybe closer

to social science, this binary representation is often used to study the adoption of a

product through imitation of neighbours, like in (DJBJ07). What defines an agent is

his state (has adopted, doesn’t want to adopt or has not heard of the product yet)

and the shape of its utility function, which reveals its tendency to be influenced by

others or follow its own desire. The more adopters the agent knows when it decides

to adopt, the higher its chance to adopt as well. In this literature, it is possible to

relate an artificial population to some observed adoption dynamics, and to assess the

diversity of the situation depending on the type of products, for example (DJBJ07). It

can be applied to research in marketing in order to suggest guidelines for promotional

activities. Some people couple this to market and production dynamics to make the

predictions more accurate (MS10).

Another type of simulation, also very popular and refered to as the ”Deffuant

model”, represents an opinion as a real number value, and defines the social influence

in an interacting pair using the notion of bounded confidence. Agents are not only

defined by the value of their opinion (o), but also by a level of uncertainty(u), where

a segment of opinion ([o − u; o + u]) contains all the opinions that can influence the

agent. An agent with high uncertainty (resp. low) has a low confidence (resp. high)

since it can be easily (resp. rarely) influenced. This influence algorithm is such that

the influence is not symmetric when the agents do not have the same uncertainty.

Uncertainty itself evolves when opinion changes. The features of opinion diffusion

that are created by this algorithme are now quite well-known and have been studied

largely (DAWF02). In particular, results are largely dependent on the distribution of

uncertainty. The fact that in some cases agents cannot be influenced is refered to as

bounded confidence (HK02) in this type of representation of an opinion. Changing

the definition of bounded confidence can also have an influence on the macro results

(HK02).

Eventually, another representation of influence is found in the seminal work of

Axelrod (Axe97). In his paper, what we call belief is ”culture”1 and is represented

by a bit string of n features, each of which can take different traits (each feature can

1The choice of terms is always debated in models of influence. Axelrod is very clear on his terminology

choice: ”Unfortunately, no good term describes the range of things about which people can influence each

other. Although beliefs, attitudes, and behavior cover a wide range indeed, there are still more things over

which interpersonal influence extends, such as language, art, technical standards, and social norms. The

most generic term for the things over which people influence each other is culture. Therefore, the term

culture will be used to indicate the set of individual attributes that are subject to social influence.” We

can conclude that there is no good way or bad way to name these elements that circulate among agents,

and this is why we simply adhere to the usual view in ABM influence models.
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take the same number of traits). An agent can only influence one of its neighbors;

influence occurs when both agent agree on the traits of some features: if they have 60%

of common beliefs, the (more confident) agent has a probability of 60% of influencing

the other agent. One can recognize the same intuition as with the previous notion of

bounded confidence, where proximity of beliefs increases the probability of influence,

but there is no heterogeneity among agents here. The representation of beliefs in

our system is a simple version of the culture of Axelrod with 10 features and two

traits fror each feature, and we use the same calculus of a distance between two

opinions (Hamming distance). The influence model being very different, and the

dimension he studies being absent in our model, we cannot directly compare our

results to his. Multidimensional beliefs also appears in (HDJ07) which is an extension

of the previously cited ”Deffuant model”.

Our model can be positioned within this literature. We build a simple model of

learning through influence, where the representation of beliefs is close to the one of

Axelrod (Axe97). The transmission of beliefs, however, was influenced by the model of

(DAWF02) since we consider that the agents have heterogenous ability to influence and

be influenced. What has not, to our knowledge, been present previously in research

on social influence, is the fact that there exists a ”correct” belief, a fixed target that

agents could potentially learn about, and that a belief that is extremely ”wrong” is

more difficult to transmit than a ”correct” belief. Our aim is not so much to see if we

can achieve convergence of beliefs, but rather to explore whether the convergence of

beliefs can also be regarded as collective learning, which enables a better coordination

in time. We now describe our model before explaining its main dynamics.

1.4 Confidence and overconfidence

As said previously, the notion of bounded-confidence is very present in influence models

and can be defined simply: how willing one is to be influenced by another agent. The

proximity of beliefs is the key dimension in all previously cited papers: the closer the

beliefs, ther easier it is to communicate and influence eachother. Here we describe

other uses of the notion of confidence which are related to our central question of

learning.

The notion of confidence is found in psychology, and more recently in economics

where it is studied greatly to explain anomalies in expected behaviors, in particular

when it comes to investment prediction and choices ((Hil03)). The main source of

overconfidence is miscalibration, which is the tendency to overestimate the precision

of one’s information - people tend to state (and act as if) their belief was more certain

than it actually is. or example an individual will pretend that he is right with 70%

chance, but reveal himself to be wrong in much more than 30% of tested cases. The

notion of bounded-confidence as defined in the influence literature, and the way we

precisely define it in our model, are in line with this notion of overestimation of the

quality of your belief.
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It has been widely demonstrated that the tendency to be overconfident is very

present in the population, but also heterogenous ((FSL77)). Interestingly it is not

linked at all to objective knowledge, being completely decorrelated from IQ for exam-

ple ((BHMP05), (SW98)). The reason for being overconfident are usually linked to

experience, both in the short term and in the long term. For example, it is shown

that men are more overconfident than women ((BO01)(SK04)) or that some types of

professional training can induce more overconfidence than average ((SK04)). In that

sense, it is possible to test overconfidence of individuals with special measures and

show that it is stable in time and can be applied to many different tasks, although

it varies depending on the domain of the problem and the way the individual has

to express its belief ((KSGVB99)). In the short term, the performance regarding a

given task also has a huge impact: when being repeatedly successful, an individual

will become overconfident, and turn out to be less sensitive to the perception of their

following success or errors ((HM06)). Once overconfidence is installed, individuals

do not care about the actual result of their choice and do not reevaluate their confi-

dence. This usually leads to an increase of bad choices for the ones that were initially

successfull ((HM06)).

Indeed some studies show the impact of overconfidence on success, and it is usu-

ally shown to be negative ((CL99)). As ((BHMP05)) explains (we do not cite his

references): ”Both psychologists and economists have argued that positive ilusions

may lead individuals to attaint better outcomes, or example through motivating them

to work harder and persiste when the going gets tough. However our experimental

results suggest that realism can produce more positive outcomes in market situations

in which agents compete and where perspicacity and accuracy in judgment may count

for more than motivation and persistence. This is in line with psychological studies

which show that realism facilitates performance when acuracy judgment is important

for selecting successful effort investment strategies. (..) In sum, the markets studied

seem to punish - not reward - miscalibration and positive illusions.”

The question we address with our simulation study is in line with this studies.

We have a slightly more collective approach since we are not interested in individual

performance, but a global observation is used here to decide of the impact of over-

confidence on performance - seen as learning of the group about a target reality. In

our model, the notion of overconfidence is indeed very close to the one described in

psychological literature. How difficult it is for an agent to be influenced may be related

to its self-evaluation of the quality of its belief. In our model, it is also heterogenous

and totally decorrelated from the actual quality of the belief; an objective reality has

a role to play in that success is reduced with bad belief, and overconfidence is not

good for adapting to this reality and succeeding in actions.
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2 Model, simulations and observed indicators

2.1 Model

In this model, agents share an environment with some characteristics that they cannot

perceive directly but about which they have a belief. They interact by engaging in

common actions and learn thanks to these actions. The characteristics of agents and

the dynamics of the model is described here, and we give the values parameters can

take.

Agents are situated in an environment that is defined by a bit string, each bit

taking 0 or 1 as values. It is randomly initiated (each bit takes value 0 or 1 with a

0.5 probability) and stays unchanged throughout the simulation. In the basic version,

the length of the bit string is 10. (In more general tests we lead and discuss here, the

environment can have other sizes and the bits can take more values but these tests

are used to show robustness and limits of the result and we always refer to the ”basic”

version).

Agents are characterised by their belief about the environment (”belief”) and their

self-confidence (”confidence”). The belief has exactly the same shape as the environ-

ment bit string and is initialised randomly and independently for each agent. Belief

evolves through influence and learning. Confidence is fixed for the whole simulation

and takes value 1 to 9.

We use Hamming distance to define the difference between two beliefs: the number

of bits that are different among the two compared strings. The distance can take any

integer between 0 and 10 as value. We define in the same way the error of agents, as the

difference between their belief string and the environment string. In the appendix 6.1

we give some examples of the computation of distances and consequences on influence.

The simulation is made of successive time-steps. At every step, all agents meet

by pair, drawn randomly following a uniform law. Each interaction can lead to the

transmission of a belief, which depends on four tests:

1. agents determine who will lead the action: there is one leader and one follower

- this is based on relative confidence. The agent with the highest confidence is

chosen to be the leader. If both agents have the same confidence, both can be

chosen with probability 0.5.

2. agents see if their believes have enough similarity to be able to perform the

action together - if the difference of belief (Hamming distance) is lower than the

confidence of the follower, he will accept to act with the leader; if it is strictly

lower he will not.

3. agents act and discover if the action is successful - this part is not expressed

directly as an action in the model but as a probability of success. The success

of the action is drawn with a probability that is equal to the error of the leader:

the lower the error of the leader, the higher the chance of success.

4. if the action is successful, the leader influences the follower, otherwise, they part
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without influence taking place - when the follower is influenced, he copies a

number of bits of the leader’s belief to replace his own. The number of bits that

are copied is common to all agents and fixed: the ”quantity of learning” or qoL2.

If the action fails, they split without exchanging any information.

As can be seen, agents have memory neither of their interactions, nor of their

preeceding beliefs.

2.2 Simulations

We present two types of simulations in this paper, those with a population which is

uniform in terms of values of confidence, so that to show the impact of this level of

self-confidence on learning. Then we treat simulations with heterogenous population,

where agents can have two different confidence levels. We limit the simulation to the

description of two populations, due to results of a former work (cite Rouchier, 2007).

It has been shown that distribution of values of confidence is what matters in the

system, not average value. More precisely, highest and lowest values of confidence are

the ones that have the main impact on the dynamics. These simulations are thus not

described with ”the list of confidence” of agents but just by the size of two groups

and the value of the high confidence and the low confidence defining each group.

Homogenous populations are of course a special case of this description, with both

values of confidence being equal.

A simulation is defined by its initial setting:

• the number of agents (here fixed to 100 for uniform simulations);

• a randomly drawn bit string to describe the environment;

• randomly drawn bit strings, beliefs of all agents;

• the size of the group with high confidence;

• the high value of confidence;

• the low value of confidence;

• the quantity of learning (qoL);

• the way the success is associated to belief (in the above description, the basic

model, the probability of failure is linear with error of the leader);

• the size of the bit string that represents the environment (basic model is 10);

• the number of different bits that can be used to represent the environment (basic

model is 2).

The indicator we use is the quality of learning of the whole population, which is

the average number of correct bits for all agent’ believes. Sometimes we also observe

the speed of learning which is the speed of reaching the point where agents all agree

on their belief.

2The difference between ”quantity of learning”, the parameter, and quality of learning, as an indicator,

has to be stressed. The quality of belief is the global indicators that gives the average mistake of agents
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A simulation is the succession of 1000 time-steps. We are interested in some sta-

tistical regularities of the learning process that occur in the medium run. Sometimes,

the simulation stops in situations where the believes of agents are not stable, espe-

cially when they do not succeed in learning so well. In particular, this will be true

when the size of the representation of reality is increased (as seen in the next section)

or when agents are all very confident. Logically, the system should reach one of the

two possible absorbing states, where agents’ beliefs do not evolve anymore. This hap-

pens either when agents have identical beliefs or when they cannot undertake common

actions anymore (being to distinct in beliefs). Depending on initial conditions and re-

alisations of random variables, learning will stop in one of these states. However, the

length of the simulation can be extremely long. In this case, running the simulation

for 2000 or 5000 time steps does not improve learning as it is defined: agents’ beliefs

can improve and then get worse, and get better again, without converging necessarily

during this time. In social systems, the opportunities of learning are rather scarce

and since we wish the model to be intuitively realistic, we consider that the time of

convergence should not be too long and that it is relevant to limit the number of

interactions.

In the first set of simulations, the ones with population with uniform confidence,

we lead simulations in different direction. First we show the influence of the value

of confidence on the learning, which is straighforward in this system. We evaluate

the influence of two parameters that are rather critical in this type of representation,

as has been noted by Axelrod (Axe97): the size of the representation of the belief

and the number of different bits that can be use to build the representation. We also

show that two other parameters, one central in our learning dynamics and one in our

influence dynamics can be of importance: the probability of success as a function of

the error of the leader and quantity of learning. After discussing these results we use

the so-called basic model to show our central point with heterogenous populations.

2.3 General observations

Each simulation was run about 100 times; results are qualitatively stable with some

possible quantitative variations and this is why we average over the simulation runs.

Before giving simulation results, we can note a few dynamical characteristics of the

model that can be deduced without running the simulations.

• An agent can revise its belief only if it is a follower, which happens only when it

meets some other agent with a confidence which is at least higher than its own.

Hence: the higher the confidence of an agent, the less it will learn. When two

groups of agents have different confidence, the agents with high confidence can

only learn from agents of the same group. If this group is small, they cannot

learn much.

• In the interaction process, introducing a network that differs from the complete

graph would restrain communication to pairs connected in the network. In our

9



simulation, an agent can only interact with an agent which has a belief that is

close to its own. This limitation induces a network that connects only agents

with close beliefs. By introducing heterogeneous confidence we create a non

symmetrical ”influence network”. However this network is never fixed since

beliefs evolve all the time. For example, it is clear that when time goes on,

agents learn from each other, hence beliefs will converge a bit, then and more

more actions will take place, implying more convergence of beliefs. The system

displays a dynamic feedback on the speed of convergence through the size of the

connected interaction network.

3 Dynamics of the model with uniform population

These simulations are special cases where all agents have the same chance of being

follower or leader at each time-step, and where the quality of the belief impacts on the

action every two time-steps on average. In this case, the number of actions depends

directly on the confidence of the population: the higher the confidence, the less agents

collectively learn about the environment. After this main result, we test its robustness

relative to several parameters. We first give the influence of the qoL (number of

exchanged bits) and choose a value that will be stable for the following simulations.

Then, we study the way success is related to beliefs in the environment. Eventually,

we study the influence of the size of the belief, the number of possible values for each

bit (complexification of the reality) and show that the result holds. From this we

stabilise our basic setting: the bit string is of length 10 with values being 0 or 1, qoL

is 5, an the failure of agents is linear with the error of the leader.

3.1 Influence of confidence

We give here results based on the previously defined basic design and vary the value

of confidence from 1 to 9. Several patterns can be observed:

1. learning is complete, all agents have a belief that corresponds precisely to the

environment bit string after some time;

2. agents learn about the environment, without reaching complete knowledge but

with convergence;

3. agents learn a bit about the environment, without converging to a single belief.

4. no learning takes place.

When learning occurs, its dynamics is such that there is a regular increase in the

number of correct bits of agents, until it reaches it final value. The number of correct

bits reaches 10 in almost all simulations when confidence is lower than 5. When

confidence is 6 or 7, there is no complete learning but agents’ belief converge and get

closer to the reality. Eventually, when the confidence value is 8 or 9, there is little

or no learning at all: the number of correct bits stays almost unchanged (see Figure
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1), which means similar to the initial random value of 5. Hence either learning starts

or it does not. This is explained quite straighforwardly with the number of actions

that can be undertaken, due to the rules of interactions. The number of actions

when confidence is low, less than 5, is around 40 at start. At the beginning agents

know nothing, so they have random knowledge, which gives a probability of 0.5 of

success, and hence the average number of success is 20. The influence process can

take place, which improves knowledge quite quickly and has an impact on the number

of possible actions since agents agree more on the characteristics of reality. This is a

virtuous circle where convergence of belief increases the ability to act, hence to learn

and converge in belief. The same learning process, based on positive feedback, can

take place for confidence 6 or 7, and very occasionally with confidence 8. In these

cases it starts a bit later and accelerate after some time (see Figure 2).

Figure 1: This figure shows results from three typical simulations. It is the evolution over
1000 steps of the number of average correct bits in a population of 100 agents with uniform
confidence. Variation of confidence give different dynamics of learning and in particular,
when confidence is at 9, there is no sign of learning in the group.

When uniform confidence increases the time to attain good learning or complete

knowledge increases as well. The number of simulations with no good learning also

increases: when the confidence is above 7, it is often the case that the agents do not

learn 9 bits.

3.2 Varying the learning and influence dynamics

3.2.1 Quantity of learning

Quantity of Learning (qoL) has no qualitative impact on our results, apart from two

values: when it is equal to 1 and 10. Our first assumption was that changing qoL
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Figure 2: This figure shows the number of actions at each time-step over 1000 steps in
a population of 100 homogeneous agents. When confidence is 7, one can note that takes
time to have agents beliefs converge enough to increase significantly the number of actions.
After this minimal converge on belief through learning, the possibility of actions increases
stiffly.

Table 1: Different values depending on confidence for 100 simulations with basic model:
cases without complete learning, cases when final knowledge is less that 8, time to complete
learning and average value when complete learning is not attained.

Confidence 1 2 3 4 5 6 7 8 9

Simulations with-

out complete learn-

ing

1 0 3 2 17 70 100 100 100

Simulations with no

learning

0 0 0 0 1 0 2 97 100

Av. time to com-

plete learning

247 232 234 250 263 347 - - -

Av. knowledge if no

complete learning

9 - 9 9 9.8 9.84 9.36 6.27 5.05
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would vary convergence time and we hence ran simulations for 2000 and 5000 time-

steps for this test, with no difference in result. In situations where all agents learn

easily (100 agents of confidence 1), all values of qoL apart from 1 and 10 make agents

learn all 10 bits. When qoL is 1 the average learning over 30 simulations is 9.8 with

an MSD of 0.2 and qoL of 10 gives a learning of 8.4 with an MSD of 0.7. Clearly qoL

= 1 gives a results which is slightly different while qualitatively equivalent to other

values, whereas qoL = 10 changes the results. We have also tested this result for

various values of confidence, excluding qoL of 10, and observing average values and

MSD (presented in Table (2)), we conclude that the value of qoL has a non significant

impact. However, the value of 1, which is the one chosen by (MDNW04) gives slightly

less go results in our case, and we decided not to use it. Since we were going to

have very various type of simulations, with various length of bit strings, we decided

to fix qoL that is half the number of bits of the reality string for the following results

presented in this paper. One has to remember that agents copy randomly chosen bits

that can be identical to the ones they had or different: hence they change at most

qoL bits when they get influenced and the closer the beliefs, the smaller the number

of bits that are actually changing.

Table 2: Average values of learning and MSD for each value of confidence where qoL
changes from 1 to 9.

Confidence 1 2 3 4 5 6 7 8 9

Average of correct

bits

9.95 9.94 9.95 9.97 9.92 9.67 8.64 5.74 5.04

MSD comparing

values of qoL

0.06 0.07 0.07 0.04 0.1 0.35 0.99 0.32 0.04

3.2.2 Reaction of the environment: changing success of action

The learning and influence dynamics clearly relies on the probability to achieve a

successful action when belief is given. We hence tried to vary this to see if the main

result (influence of confidence) would stay true. In all previous examples, the curve

was a line, 10% or good knowledge would give 10% of success. Now, we test convex

and concave curves which have different flatness at extreme ends, as shown in Table

4 and in Figure 8 in appendix 6.2. This should have an impact on transmission of

belief.

We again establish two results based on the simulations with the different curves.

First, the reaction of the environment does have a huge impact at global level, and it

is the one that could be expected. When the reaction of the environment relies on a

concave curve of probability, learning do not take place as well as with the linear curve

and can even be blocked (Figure 3). Interestingly, these ”concave” settings, where a
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Table 3: Probability of success (in percent) for action as a function of the number of bits
that the agent knows. We build five different reaction of the environment. The concave
ones are such that a bad knowledge can give better success than linear basic model; the
concave ones are such that it needs good knowledge to increase probabilty of success.

Number

of known

bits

0 1 2 3 4 5 6 7 8 9 10

Linear 0 10 20 30 40 50 60 70 80 90 100

Convex 1 0 5 10 16 23 30 39 49 60 72 100

Convex 2 0 1 2 3 5 8 12 20 30 55 100

Concave 1 0 20 35 50 60 68 75 84 90 95 100

Concave 2 0 40 60 70 80 85 91 95 97 98 100

bad knowledge has a chance of being transmitted, even has a dynamics which is

different from all previously observed dynamics: it is possible to see kwoledge improve

and then regress. We did not try to understand the reason of this result for this paper.

Neither did we try to find a limit case of concavity, where the concave curve could still

imply good learning in the setting we chose for the shown simulations. What interests

us here, once more is to show that the ”basic” setting, here with linear reaction,

although not universal, is not the peculiar that it would not be extendable. Clearly,

our learning mechanism still works in environments where error in representation

makes it harder to succeed and transmit a knowledge (convex reactions).

Figure 3: This figure shows the evolution of the number of correct bits on average in a
population of 100 agents of confidence 5, with qoL 5, for our five reactions of the environ-
ment. Concave reactions clearly display dynamics that are different from the others. It
shows that our learning model is not appropriate in environments where it is possible to
act successfully with bad knowledge.
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The second result is the robustness of the characteristics of the model we are

interested in: the dependence of learning to confidence is again witnessed, as well

as the fact that learning is equivalent for all values which are less than 5 and that

confidence above 8 implies very bad learning.

Table 4: Average knowledge of agents at the end for 50 simulations, with different reactions
of the environment and confidence. Increasing confidence reduces learning.

1 2 3 4 5 6 7 8 9

High Concave 8.8 8.51 8.77 8.2 8.02 8.27 8.12 5.5 4.96

Concave 9 9 8.4 8.6 8.8 8.67 8.38 5.86 5

Linear 10 10 10 9.99 9.98 9.89 9.31 6.49 4.95

Convex 10 10 10 10 9.97 9.72 8.88 5.92 5.01

Low Convex 10 10 9.98 9.94 9.68 8.87 7.64 5.48 5.12

3.3 Varying the representation of the environment

We vary two parameters in the representation of the environment, following Axelrod

(Axe97) in his seminal paper. We modify the number of bits of the bit string and

increase the number of possible values that each bit can take. Since our model is

rather simple at the start (1024 different possible reality strings), we mainly test the

influence of an increase of complexity.

3.3.1 Length of bit string

When we change the length of the bit string, where bits can take value 0 or 1, two

main results appear. First, the influence of the confidence of the population is still the

same. When confidence increases, population learning gets worse, and above a certain

threshold, learning do not take place at all. This is shown by Figure (4). The second

result is that the complete learning cannot be achieved anymore when the size of the

bit string increases too much. Even in the best conditions, with confidence of 1 and

with an increased simulation time (5000), agents do not learn completely, although

they can converge to the same belief. This can be seen in Figure (5) where the actual

learning is compared to complete learning.

3.3.2 Number of possible bits

We test the influence of the number of possible bits on the learning of agents. In

our basic model, there are just 2 values, 0 and 1, which allows 100 different possible

environment to exist. We test the learning of the 100 agents with different values of

confidence, with qoL of 5. Two results are observed. First, the value of confidence once

more has an impact on learning in this system, as can be seen on Figure (6). However,
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Figure 4: This figure shows the evolution of the number of correct bits on average in a
population of 100 agents with all values of confidence, for different values of string size.
Confidence is tested for values from 1 to (string size - 1). The qoL is half of the string
size. For all the situations shown here the final learning of agents is directly linked to the
confidence.

Figure 5: This figure shows the average learning after 1000 up to 5000 time steps (depend-
ing on the length of the bit string) of learning for agents of confidence 1, with qoL of half
the size of the bit string. It has to be noted that there is no difference when siulations
runs for 2000 or 5000 time-steps for high lengths of the string, meaning that the society
stabilises in a situation where learning is not so good.
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as the number of possible values for each bits increases from 2 to 10, confidence need

to be smaller to enable agents to learn. In cases the system is really complex (10 bits

taking 10 different values, so 10 000 000 000 different environment are possible) only

agents with confidence of 1 can learn the environment almost perfectly. A table gives

in appendix (ref à venir) gives all values with the number of values varying from 1 to

10.

Figure 6: This figure shows the average learning after 1000 for agents of confidence 1
to 9 where the number of possible values for each bit of the bit string changes. When
confidence increases, learning does not happen at all, as can be seen by comparing the
number of correct bits to the one that is corresponds to the initial random attribution of
belief (varying with the number of possible values - on the far right of the figure).

3.4 A short discussion

Before turning to simulation with two populations of different confidence, it can be

useful to draw a few conclusions on aspects that do interest us in all previous results.

We are interested in three aspects.

• Our basic setting, which is rather simple, represents a good model for our aim.

It does dicriminate among simulations based on the criteria we are interested.

It is not too sensitive to the main criteria which we cannot justify and which

would be, in real life, certainly impossible to measure in any way: the quantity

of learning.

• This basic setting is very specific and simple. However, increase in complexity

in two ways do not destroy the model’s dynamics; change of the environment

reaction completely changes the learning dynamics if error is less ”punished”

than in the basic model. We can then trust our model to display some generality.
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This is interesting in the perspective of potentially trying to consider our results

as conclusive for general environmental issues, as we said in introduction. Of

course, fitting the model to otside reality could be rather complex, but at least

the possibility is not rejected at this level.

• Up until now our model gives global and dynamical results that are in line

with the individual definition of confidence and overconfidence as defined by

psychologists. It seems reasonable to use it to explore the impact of one of their

observation: the heterogenity of this confidence in population. Again, we are

mostly interested in collective view, rather than individual, and for the moment

our agent-based model seems to fit our aim.

4 Dynamics with two confidence levels

We now turn to simulations that gather two populations of different confidence. In

the basic setting we use from now on, two values of confidence have been identified

as thresholds. With confidence under 5 all simulations are similar; with confidence

above 8 there is almost no learning in the population. We can hence assume that

agents of confidence 8 and 9 can be seen as overconfident. We will then proceed by

mixing agents of different confidence. We will see how very few overconfident agents

reduces collective learning (mixing agents of confidence 4 and 8). We will also study

the possibility that heterogeneity is the reason of this reduction of learning, not just

overconfidence (by mixing agents of confidence 1 and 4). Once this hypothesis has

been tested, we will also observe that agents who usually learn well when they are in an

homogenous population can be led to underperform when they meet agents with low

confidence (mixing agents of confidence 3 and 7). Eventually, we will check that these

results are stable if we change the interaction rule slightly: we will add some random

element to the choice of the leader by allowing low confidence agents to sometimes

influence high confidence agents. This will assure us, again, that the model can have

a bit of genericity.

4.1 Presence of overconfident agents

When the group of high confidence agents represents more than 15% of the population,

the situation is similar to one where all agents have a high confidence.

Hence, the size of the network with whom the agents can interact is central in

this system. The higher the confidence of an agent the smaller the network that can

influence him (two constraints have to be met: at least same confidence and more and

more similarity as confidence grows). The result we observe in the system is still true

for values of confidence that are higher (8 et 9) and the higher the confidence, the

more impact on learning for agents with low confidence.
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Figure 7: Average number of correct bits after 5000 time-steps in a population of 100
agents, for all possible values of the number of agents with confidence of 7. All other
agents have confidence of 2. The results are given for the whole society, as well as for both
groups of different confidence. A small number of agents with high confidence reduces the
quality of learning, up until 20 %. Above 20 %, the learning gets better as the number of
high confidence agents increases..

4.2 Influence of simple heterogeneity

As was said before, using two populations in the simulations creates a subgroup of

agents who can only be influenced by eachother. Hence we add the effect of overcon-

fidence to reduce learning, but also the fact that agents with higher confidence can

only learn from agents with the same confidence as theirs. One can imagine that the

reduction of the size of the possible influence also reduces the chance to get correct

information about the belief. We should then see if heterogenity itself is not a cause

for bad learning. For this, we just mix populations who usually achieve good learning,

agents with confidence 1 and 4. Observation of simulations show two facts. First,

when the number of high confidence agents is higher than 20, the only difference is

that the learning is longer than in usual simulations, but gets to complete knowledge

most of the time. When higher confidence agents are in low number, however, the

learning gets bad (Table ). Hence, to have bad learning in our system, there is no

need to have overconfident agents.

Facing this issue the best solution to repair the bad learning would be to increase

the size of the population - in that case agents of confidence 4 could share more

information and get to better knowledge. We test the impact of increasing the size of

the population for both mix we presented before, 1-4 and 4-8, with results after 2000

time-steps.
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4.3 Adding noise in influence

A second way to suppress the bad collective learning when it is due to group size

effect, as shown previouly, would be to keep the same size of population, but allow

agents

What these

5 Conclusion

In this paper we describe a model of collective learning about an objective target,

which is locally based on social influence. The presence of this objective target is

the main difference between our model and usual dissemination models, except maybe

(WDAN02). We use a notion of overconfidence to describe our agents: these agents can

indeed be very hard to influence because they overestimate the quality of knowledge

they have about their environment. As a consequence they cannot learn so well as

individuals. We wonder here if this individual overconfidence has an influence at the

scale of the whole population.

We first study the robustness of our learning model, by varying many parameters

of the system. First we can note that, in a homogenous population, the higher the

confidence, the worse the learning. This study also shows that the model, although

very simple, can produce results that stay true in more complex settings. We then use

the same model to study the heterogeneity of confidence and in particular the presence

of overconfident agents. These very confident agents do not learn the characteristics

of a fixed target very well, but they also disturb the learning of low confidence agents.

In particular for values of 8 or 9, learning does not take place at all in our setting.

When two groups exist, the presence of heterogeneity reduces agents’ ability to learn.

The probability of meeting another agents by whom to be influenced is the central

point: indeed, when the number of high confidence agents increases, they get closer

to a uniform situation and can learn among themselves, having less bad influence on

low confidence agents. We spotted that the worst proportion of high confident agents

is about 20%. Hence, a group that has to learn about a form of reality can be stopped

in the learning by a small group of very confident people who will learn less rapidly.

TROUVER BURA ET LA MEMETIC ou Hales An open mind is not an empty

mind.

By going through an analytical model whose properties will be explored, we could

spot one very important element of the characteristic of the environment. The more

the environment discriminates the quality of beliefs - by imposing a signifiant differ-

ence in success between agents whose beliefs are more or less accurate, we increase

drastically the global quality of learning.

It would be interesting, for further work, to analyze the same learning model in an

environment where the actions of agents transform the environment. In that setting,

the role of very confident agents might not be as ”negative” on learning, since they
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might be the origin of changes that woul lead the environment to ressemble their own

belief. The main problem of this new setting would be to decide how actions would

change the environment. One could imagine that a succesful action only transforms

it, or on this opposite, a failed action only.

Our results are in contradiction with other work, like (WDAN02), where low con-

fidence agents can make high confidence agents learn very slowly. The main reason

is of course that in our model, a low confidence agent can on no occasion influence a

high confidence agent. Maybe this assumption should be relaxed a bit, for example

by adding a very small probability that low confidence agents could influence high

confidence ones. It is not sure that this would add much to our model, considering

our interest in this dynamics. Alternatively, we could imagine that agents’ confi-

dence is transformed through an endogenous evolution. Indeed, agents having very

low success (resp. high) in their actions could decide to lower their confidence on

some occasions (resp. increase). This would be in line observations on investment

behaviours (HM06), which show that individual who know some success can become

extremely overconfident, and stay so even if their success fades away. One could also

imagine that individuals would become more confident if they often interaction with

agents who aggree with them. These two modifications could indeed be more relevant

for adapting our model to real life situation, and should certainly be addressed in our

future work.

Before doing this, we wish to show with the analytical model that our model is

robust to the size of the population, and see in which settings the result is true. We

already show that not only agents with good knowledge are important, but also agents

with average knowledge, since they are the only ones to communicate with agents who

know very little. In our simulation model, we could not detect this, since the beliefs

are drawn randomly at start and we did not particularly correlate confidence to beliefs.

Opening : changing environment !!!
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6 Appendix

6.1 Examples of influence

Two agents, A and B interact in environment E, quantity of learning is 2. E = (0 0 1

1 1 0 0 0 1 0), A’s belief is (0 1 1 0 1 0 1 0 1 0) and its confidence, 4. B’s belief is (1 1

1 0 0 0 1 0 0 0) and its confidence is 8. When they meet, B could lead the action; they

have 7 common bids, which is higher than 4, and hence A follows B in the action. B
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has 4 right bits, which means he has 40% chance of success. If it succeeds, A copies 2

bits from B to transform its belief (for example it can transform into (1 1 1 0 1 0 1 0

1 0)). If B fails, nothing happens.

Two agents, A and B interact in environment E, quantity of learning is 2. E = (0

0 1 1 1 0 0 0 1 0), A’s belief is (0 1 1 0 1 0 1 0 1 0) and its confidence, 8. B’s belief is

(1 1 1 0 0 0 1 0 0 0) and its confidence is 9. Nothing happens.

Two agents, A and B interact in environment E, quantity of learning is 3. E = (0

0 1 1 1 0 0 0 1 0), A’s belief is (0 1 1 0 1 0 1 0 1 0) and its confidence, 4. B’s belief

is (1 1 1 0 0 0 1 0 0 0) and its confidence is 4. They can act together, thanks to their

low confidence. We choose with 50% probability the leader, which is A. it has 7 bits

in common with the environment, which means 70% chance of success. If it succeeds,

B copies 3 bits from A to transform its belief (for example it can transform into (0 1

1 0 1 0 1 0 1 0)). If A fails, nothing happens.

6.2 Probabilities

Figure 8 gives a visual representation of the values of the probabilities of the envi-

ronment for each number of correct bits. The more concave the reaction, the more

discrimination it puts between completely wrong and rather wrong beliefs, and slighlty

true knowoledge allorws to have some success in action. The more convex the reaction,

the more it ”punishes” error, even limited.

6.3 Reaction of the environment

Table 5 and 6 give average values for 30 simulations of the average correctness in the

population over the last 100 time-steps out of 5000. We compare here the learning

with linear reaction of the environment and ”convex2” reaction, the one which is the

flatter at the origine but steeper when approaching complete belief. The comparison

shows that in all cases where populations are heterogenous with 80% of low confidence

agents and 20% of high confidence agents, the population learns better when facing

the more discriminatory probabilist rule, and that the simulation display less variation

(so there is less influence of initial condition - the only difference in initial condition

being the distribution of beliefs).
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Figure 8: Representation of the probability of success depending on the number of correct
bits of the belief. When the curve is convex, there is a high discrimination between
knowing very well and well and less otherwise; when the curve is concave, there is a high
discrimination between knowling very bad and bad, and less otherwise.
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Table 5: Average knowledge after 5000 time-steps for 200 agents, qol = 2, linear learning
(average over 10 simulations). Two populations : 160 with low confidence and 40 with
high confidence. Linear reaction.

Confidence 1 2 3 4 5 6 7 8 9

1 10
(0)

- - - - - - - -

2 10
(0)

10
(0)

- - - - - - -

3 9.7
(0.1)

9 (0) 10
(0)

- - - - - -

4 10
(0)

10
(0)

8 (0) 10
(0)

- - - - -

5 9 (0) 10
(0)

9 (0) 10
(0)

10
(0)

- - - -

6 10
(0)

9.8
(.2)

8.9
(.2)

9.9
(.2)

8
(.2)

10
(0)

- - -

7 8.3
(.3)

8.7
(.2)

7.2
(.2)

9.9
(.2)

7.1
(.2)

8.8
(.2)

9.4
(.1)

- -

8 5.4
(.2)

6.9
(.2)

5.6
(.2)

6.7
(.2)

5.6
(.3)

7.6
(.3)

7.9
(.3)

8.5
(.1)

-

9 6.4
(.2)

6.2
(.3)

6
(.3)

6.3
(.3)

6.5
(.3)

5.6
(.3)

6.6
(.3)

5.9
(.3)

5.1
(.1)
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Table 6: Average knowledge after 5000 time-steps for 200 agents, qol = 2, linear learning
(average over 10 simulations). Two populations : 160 with low confidence and 40 with
high confidence. ”Convex2” reaction.

Confidence 1 2 3 4 5 6 7 8 9

1 10
(0)

- - - - - - - -

2 10
(0)

10
(0)

- - - - - - -

3 9.9
(0)

10
(0)

10
(0)

- - - - - -

4 10
(0)

10
(0)

10
(0)

9.9
(0)

- - - - -

5 10
(0)

10
(0)

9.9
(0)

10
(0)

9.9
(0)

- - - -

6 9.9
(0)

8.8
(.1)

9.6
(.1)

9.8
(0)

9.2
(.1)

9.8
(.1)

- - -

7 8.6
(.1)

8.9
(.1)

9.7
(.1)

8.7
(.1)

9
(.1)

9.4
(.1)

8.3
(.2)

- -

8 8.6
(.1)

8.6
(.1)

8.7
(.1)

8.8
(.1)

8.8
(.1)

8.8
(.1)

8.4
(.1)

6.3
(.2)

-

9 8.5
(.1)

8.6
(.1)

8.6
(.1)

8.6
(.1)

8.8
(.1)

8.8
(.1)

8.2
(.2)

7
(.1)

5.1
(.1)
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