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Abstract

In this paper we introduce and study a self-similar Gaussian process that is the
bifractional Brownian motion BH,K with parameters H ∈ (0, 1) and K ∈ (1, 2)
such that HK ∈ (0, 1). A remarkable difference between the case K ∈ (0, 1) and
our situation is that this process is a semimartingale when 2HK = 1.
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1 Introduction

Houdré and Villa in [7] gave the first introduction to the bifractional Brownian motion (bifBm)

BH,K =
(
BH,K

t ; t ≥ 0
)

with parameters H ∈ (0, 1) and K ∈ (0, 1] which is defined as a

centered Gaussian process, with covariance function

RH,K(t, s) = E
(
BH,K

t BH,K
s

)
=

1

2K

((
t2H + s2H

)K − |t− s|2HK
)
; s, t ≥ 0.

The case K = 1 corresponds to the fractional Brownian motion (fBm) with Hurst parameter
H . Some properties of the bifractional Brownian motion have been studied by Russo and
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Tudor in [12]. In fact, in [12] it is shown that the bifractional Brownian motion behaves as
a fractional Brownian motion with Hurst parameter HK. A stochastic calculus with respect
to this process has been recently developed by Kruk, Russo and Tudor [9] and Es-Sebaiy and
Tudor [6].

In this paper we prove that, with H ∈ (0, 1) and HK ∈ (0, 1), the process BH,K

can be extended for 1 < K < 2. The case H = 1
2 and 1 < K < 2 plays a role to give an

extension of sub-fractional Brownian motion (subfBm) (see [4]). The subfBm (ξht , t ≥ 0) with
parameter 0 < h ≤ 2 is a centered Gaussian process with covariance:

E
(
ξht ξ

h
s

)
= Ch

(
t2h + s2h − 1

2

(
(t+ s)2h + |t− s|2h

))
; s, t ≥ 0

where Ch = 1 if 0 < h < 1 and Ch = 2(1− h) if 1 < h ≤ 2.

2 Definition of bifractional Brownian motion with pa-

rameter K ∈ (1, 2)

For any K ∈ (0, 2), let XK = (XK
t , t ≥ 0) be a Gaussian process defined by

XK
t =

∫ ∞

0

(1− e−rt)r−
1+K

2 dWr , t ≥ 0 (2.1)

where (Wt, t ≥ 0) is a standard Brownian motion.
This process was introduced in [10] for K ∈ (0, 1) in order to obtain a decomposition

of the bifractional Brownian motion with H ∈ (0, 1) and K ∈ (0, 1). More precisely, they
prove the following result:

Theorem 1 (see [10]) Let BH,K a bifractional Brownian motion with parameters H ∈ (0, 1)
and K ∈ (0, 1), BHK be a fractional Brownian motion with Hurst parameter HK ∈ (0, 1) and
W = {Wt, t ≥ 0} a standard Brownian motion. Let XK be the process given by (2.1). If we

suppose that BH,K and W are independents, then the processes {Yt = C1X
K
t2H +BH,K

t , t ≥ 0}
and {C2B

HK
t , t ≥ 0} have the same distribution, where C1 =

√
2−KK
Γ(1−K) and C2 = 2

1−K
2 .

The process defined in (2.1) has good properties. The following result is proved in
[10] for the case K ∈ (0, 1) and extended to the case K ∈ (1, 2) in [2] and [11]:

Proposition 1 (see [2],[10] and [11]) The process XK = {XK
t , t ≥ 0} is Gaussian, cen-

tered, and its covariance function is:

Cov(XK
t , XK

s ) =

{
Γ(1−K)

K

[
tK + sK − (t+ s)K

]
if K ∈ (0, 1),

Γ(2−K)
K(K−1)

[
(t+ s)K − tK − sK

]
if K ∈ (1, 2).

(2.2)

Moreover, XK has a version with trajectories which are infinitely differentiable on (0,∞) and
absolutely continuous on [0,∞).
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Using the fact that when K ∈ (1, 2), the covariance function of XK is given by

Cov(XK
t , XK

s ) =
Γ(2−K)

K(K − 1)

(
(t+ s)K − tK − sK

)
,

and considering also the process

XH,K
t = XK

t2H ; t ≥ 0, (2.3)

we can prove the following result:

Theorem 2 Assume H ∈ (0, 1) and K ∈ (1, 2) with HK ∈ (0, 1). Let BHK be a fractional
Brownian motion, and W = {Wt, t ≥ 0} a standard Brownian motion. Let XK,H the process
defined in (2.3). If we suppose that BHK and W are independents, then the processes

BH,K
t = aBHK

t + bXH,K
t , (2.4)

where a =
√
21−K and b =

√
K(K−1)

2KΓ(2−K)
is a centered Gaussian process with covariance func-

tion

E
(
BH,K

t BH,K
s

)
=

1

2K

((
t2H + s2H

)K − |t− s|2HK
)
; s, t ≥ 0.

Proof: It is obvious that the process defined in (2.4) is a centered Gaussian process. On the
other hand, its covariance functions is given by

E
(
BH,K

t BH,K
s

)
= a2E

(
BHK

t BHK
s

)
+ b2E

(
XH,K

t XH,K
s

)

=
1

2K
(
t2HK + s2HK − |t− s|2HK

)
+

1

2K

((
t2H + s2H

)K − t2HK − s2HK
)

=
1

2K

((
t2H + s2H

)K − |t− s|2HK
)
,

which completes the proof. 2

Thus, the bifractional Brownian motion BH,K with parameters H ∈ (0, 1) and K ∈
(1, 2) such that HK ∈ (0, 1) is well defined and it has a decomposition as a sum of a fBm
BHK and an absolutely continuous process XH,K .

Remark 1 Assume that 2HK = 1. Russo and Tudor [12] proved that if 0 < K < 1,
the process BH,K is not a semimartingale. But in the case when 1 < K < 2, BH,K is
a semimartingale because we have a decomposition of this process as a sum of a Brownian
motion B

1
2 and a finite variation process XH,K.

The following decomposition is exploited to prove the quasi-helix property (in the
sense of J.P. Kahane) of BH,K . This result is satisfied for all K ∈ (0, 2).
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Proposition 2 Let H ∈ (0, 1) and K ∈ (0, 2) such that HK ∈ (0, 1). Let (ξ
K/2
t , t ≥ 0)

be a sub-fractional Brownian motion with parameter K/2 ∈ (0, 1), independent to BH,K and

suppose that (B
K/2
t , t ≥ 0) and (BHK

t , t ≥ 0) are two independent fractional Brownian motions

with Hurst parameter K/2 ∈ (0, 1) and HK ∈ (0, 1), respectively. We set ξK,H
t = ξ

K/2

t2H
and

B̃H,K
t = B

K/2
t2H , t ≥ 0. Then, it holds that

BH,K +
√
21−KξK,H (d)

=
√
21−K

(
B̃H,K +BHK

)
(2.5)

where
d
= denotes that both processes have the same distribution.

Proof: The result follows easily from the independence and the fact that their corresponding
covariance functions satisfy the following equality for all s, t ≥ 0

RH,K(t, s) =
1

2K
(
(t2H + s2H)K − |t− s|2HK

)

= 21−K
(
−Cov(ξK,H

t , ξK,H
s ) + Cov(B̃H,K

t , B̃H,K
s ) + Cov(BHK

t , BHK
s )

)
.

2

Proposition 3 Let H ∈ (0, 1) and K ∈ (1, 2) such that HK ∈ (0, 1). Then for any t, s ≥ 0,
if 0 < H ≤ 1/2

21−K |t− s|2HK ≤ E
(
BH,K

t −BH,K
s

)2
≤ |t− s|2HK ,

and if 1/2 < H < 1

21−K |t− s|2HK ≤ E
(
BH,K

t −BH,K
s

)2
≤ 22−K |t− s|2HK .

Proof: Using the proposition 2, we obtain

E
(
BH,K

t −BH,K
s

)2

= 21−K

(
−E

(
ξ

K
2

t2H
− ξ

K
2

s2H

)2
+ E

(
B

K
2

t2H
−B

K
2

s2H

)2
+ E

(
BHK

t −BHK
s

)2
)

= 21−K

(
−E

(
ξ

K
2

t2H − ξ
K
2

s2H

)2
+
∣∣t2H − s2H

∣∣K + |t− s|2HK

)
.

On the other hand, from [3] we have

(2− 2K−1)
∣∣t2H − s2H

∣∣K ≤ E
(
ξ

K
2

t2H − ξ
K
2

s2H

)2
≤
∣∣t2H − s2H

∣∣K .
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Thus

21−K |t− s|2HK ≤ E
(
BH,K

t −BH,K
s

)2
≤ 21−K

(
|t− s|2HK + (2K−1 − 1)

∣∣t2H − s2H
∣∣K
)
.

Then we deduce that for every H ∈ (0, 1), K ∈ (1, 2) with HK ∈ (0, 1)

21−K |t− s|2HK ≤ E
(
BH,K

t −BH,K
s

)2

and the other hand for every H ∈ (0, 1
2 ], K ∈ (1, 2) we have

E
(
BH,K

t −BH,K
s

)2
≤ 21−K

(
|t− s|2HK + (2K−1 − 1)

∣∣t2H − s2H
∣∣K
)

≤ |t− s|2HK
.

The last inequality is satisfied from the fact that
∣∣t2H − s2H

∣∣ ≤ |t− s|2H for H ∈ (0, 1
2 ].

To complete the proof, it remains to show that for every H ∈ (12 , 1), K ∈ (1, 2) with HK ∈
(0, 1) (observe that in this situation we have HK ∈ (12 , 1))

E
(
BH,K

t −BH,K
s

)2
≤ 22−K |t− s|2HK .

Notice that,

E
(
BH,K

t −BH,K
s

)2
=

1

2K
(
(2t2H)K + (2s2H)K − 2

(
(t2H + s2H)K − |t− s|2HK

))

=
2

2K
|t− s|2HK +

(
t2HK + s2HK − 2

2K
(t2H + s2H)K

)
.

Hence it is enough to prove that

t2HK + s2HK − 2

2K
(t2H + s2H)K ≤ 21−K |t− s|2HK ,

or equivalently
t2HK + s2HK ≤ 21−K

(
(t2H + s2H)K + |t− s|2HK

)
.

From now on we will assume, bethought loss of generality, that s ≤ t. Dividing by t2HK we
obtain that we have to prove that

1 +
(s
t

)2HK

≤ 21−K

((
1 +

(s
t

)2H)K

+
(
1− s

t

)2HK
)
.

Equivalently we have to prove that, for any u ∈ (0, 1] the function

f(u) := 21−K
[
(1 + u2H)K + (1 − u)2HK

]
− u2HK − 1
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is positive.
Observe that f(1) = 0, so, it is enough to see that the derivative of this function is negative
for u ∈ (0, 1]. But,

f ′(u) = 2HK21−Ku2HK−1

[(
1 +

1

u2H

)K−1

−
(
1

u
− 1

)2HK−1

− 2K−1

]
.

To prove that f ′(u) ≤ 0 for u ∈ (0, 1] it is enough to see that the function

h(u) :=

(
1 +

1

u2H

)K−1

−
(
1

u
− 1

)2HK−1

− 2K−1,

is negative for u ∈ (0, 1]. But, since h(1) = 0, it is enough to prove that its derivative h′(u) ≥ 0
for u ∈ (0, 1]. But,

h′(u) =
1

u2HK

(
−2(K − 1)H(u2H + 1)K−2u2H−1 + (1− u)2HK−2(2HK − 1)

)
.

Observe that u2H−1 ≤ 1 because H ∈ (12 , 1), (u
2H + 1)K−2 ≤ 1 and (1− u)2HK−2 ≥ 1. So,

h′(u) ≥ 1

u2HK
(−2(K − 1)H + 2HK − 1) =

1

u2HK
(2H − 1) ≥ 0,

because H ≥ 1
2 . The prove is now complete. 2

Proposition 4 Suppose that H ∈ (0, 1), K ∈ (1, 2) such that HK ∈ (0, 1). The bifBm BH,K

has the following properties

i) BH,K is a self-similar process with index HK, i.e.

(
BH,K

at , t ≥ 0
)

d
=
(
aHKBH,K

t , t ≥ 0
)
, for each a > 0.

ii) BH,K has the same long-range property of the fBm BHK , i.e. BH,K has the short-
memory for HK < 1

2 and it has long-memory for HK > 1
2 .

iii) BH,K has a 1
HK -variation equals to 2

1−K
HK λt with λ = E(|N | 1

HK ) and N being a standard
normal random variable, i.e.

n∑

j=1

(
BH,K

tn
j

−BH,K
tn
j−1

) 1
HK −→

n→∞
2

1−K
HK λt in L1(Ω).

where 0 = tn0 < . . . < tnn = t denotes a partition of [0, t].

iv) BH,K is not a semimartingale if 2HK 6= 1.

The proof of the proposition 4 is straightforward from [12] and [6].
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3 Space of integrable functions with respect to bifrac-

tional Brownian motion

Let us consider E the set of simple functions on [0, T ]. Generally, if U := (Ut, t ∈ [0, T ]) is
a continuous, centered Gaussian process, we denote by HU the Hilbert space defined as the
closure of E with respect to the scalar product

〈
1[0,t],1[0,s]

〉
H

= E (UtUs) .

In the case of the standard Brownian motion W , the space HW is L2([0, T ]). On the
other hand, for the fractional Brownian motion BH , the space HBH is the set of restrictions to
the space of test functions D((0, T )) of the distributions ofW

1
2
−H,2(R) with support contained

in [0, T ] (see [8]). In the case H ∈ (0, 12 ) all the elements of the domain are functions, and

the space HBH coincides with the fractional Sobolev space I
1
2
−H

0+ (L2([0, T ])) (see for instance
[5]), but in the case H ∈ (12 , 1) this space contains distributions which are not given by any
function.

As a direct consequence of Theorem 2 we have the following relation between HBH ,
HBH,K and HXH,K , where BH,K is the bifractional Brownian motion and XH,K is the process
defined in (2.3).

Proposition 5 Let H ∈ (0, 1) and K ∈ (1, 2) with HK ∈ (0, 1). Then it holds that

HXH,K ∩HBHK = HBH,K

If we consider the processes appearing in Proposition 2 we have also the following
result:

Proposition 6 Let H ∈ (0, 1). For every K ∈ (0, 2) with HK ∈ (0, 1) the following equality
holds

HξH,K ∩HBH,K = HB̃H,K ∩HBHK .

Proof: Both propositions are a direct consequence of the two decompositions into the sum
of two independent processes proved in Theorem 2 and Proposition 2. 2

Remark 2 For the case K ∈ (0, 1) we have the following equality (see [10])

HBHK = HXH,K ∩HBH,K .

4 Weak convergence towards the bifractional Brownian

motion

Another direct consequence of the decomposition for the bifractional Brownian motion with
H ∈ (0, 1), K ∈ (1, 2) and HK ∈ (0, 1) is the following result of convergence in law in the
space C([0, T ]).
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Recall that the fractional Brownian motion of Hurst parameter H ∈ (0, 1) admits an
integral representation of the form (see for instance [1])

BH
t =

∫ t

0

KH(t, s)dWs,

where W is a standard Brownian motion and the kernel KH is defined on the set {0 < s < t}
and given by

KH(t, s) = dH(t− s)H−
1
2 + dH(

1

2
−H)

∫ t

s

(u − s)H−
3
2

(
1−

( s
u

) 1
2
−H
)
du, (4.6)

with dH the following normalizing constant

dH =

(
2HΓ(32 −H)

Γ(H + 1
2 )Γ(2 − 2H)

) 1
2

.

Theorem 3 Let H ∈ (0, 1) and K ∈ (1, 2) with HK ∈ (0, 1). Consider θ ∈ (0, π) ∪ (π, 2π)
such that if HK ∈ (0, 14 ] then θ satisfies that cos((2i + 1)θ) 6= 1 for all i ∈ N such that

i ≤ 1
4

[
1
H

]
. Set a =

√
21−K and b =

√
K(K−1)

2KΓ(2−K) . Define the processes,

BHK
ǫ =

{
2

ǫ

∫ T

0

KHK(t, s) sin
(
θN 2s

ǫ2

)
ds, t ∈ [0, T ]

}
,

XH,K
ǫ =

{
2

ǫ

∫ ∞

0

(1 − e−st2H )s−
1+K

2 cos
(
θN 2s

ǫ2

)
ds, t ∈ [0, T ]

}
,

where KHK(t, s) is the kernel defined in (4.6). Then, {Y H
ǫ (t) = aBHK

ǫ (t) + bXH,K
ǫ (t), t ∈

[0, T ]} weakly converges in C([0, T ]) to a bifractional Brownian motion.

Proof: Applying Theorems 3.2 and 3.5 of [2] we know that, respectively, the processes BHK
ǫ

and XH,K
ǫ converge in law in C([0, T ]) towards a fBm BHK and to the process XH,K . More-

over, applying Theorem 2.1 of [2], we know that the limit laws are independent. Hence, we are
under the hypothesis of the decomposition obtained in Theorem 2, which proves the stated
result.

Remark 3 Obviously we can also obtain the same result interchanging the roles of the sinus
and the cosinus functions in the definition of the approximating processes.
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