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Abstract. In Independent Factor Analysis (IFA), latent components (or
sources) are only recovered from their linear observed mixtures. Both the
mixing process and the sources densities (that are assumed to be gen-
erated according to mixtures of gaussians) are learned from observed
data. This paper investigates the possibility of estimating the IFA model
when two prior knowledge are incorporated : constraints on the mix-
ing process and partial knowledge on the cluster membership of some
examples. Semi-supervised or partially supervised learning frameworks
can thus be handled. These two proposals have been initially motivated
by a real-world application that concerns a fault diagnosis of a railway
device. Results on this application are provided to demonstrate its abil-
ity to enhance estimation accuracy and remove indeterminacy commonly
encountered in unsupervised IFA such as the sources permutations.

Key words: Independent Factor Analysis, mixing constraints, semi-
supervised learning, diagnosis, railway device

1 Introduction

The generative model involved in Independent Component Analysis (ICA) as-
sumes that observed variables are generated by a linear mixture of indepen-
dent and non Gaussian latent variables (or sources). Furthermore, when the IFA
model is considered, each latent variable has its own distribution, modeled semi-
parametrically by a mixture of Gaussians (MOG). These models (ICA or IFA)
lead to reliable results if only the independence assumption is satisfied and the
postulated mixing model suited to the physics of the system. Otherwise, they fail
to recover the sources. Several extensions of the basic ICA model have been pro-
posed to improve its performance. They take account of prior information that
could concern either the mixing process, the latent variables or both of them.
The main approaches exploit priors like temporal correlation [6], positivity [7, 3,
11] or sparsity [8, 9].

In this paper, we propose two extensions of the basic IFA model. The first
one concerns the possibility of incorporating independence hypotheses between
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some latent and observed variables, hypotheses that can be derived from phys-
ical knowledge available on the mixing process. This kind of approach, not yet
applied within the framework of IFA, has been widely considered in the Facto-
rial Analysis [10, pages 43-44, 175-176] and more specifically in the structural
equation modeling domain [12]. The second proposition consists to incorporate
additional information on the cluster membership of some samples to estimate
the IFA model. In this way, semi-supervised learning framework is handled. Con-
sidering the graphical model of the IFA as shown in Figure 1, the prior knowledge
on the mixing process consists to omit some connections between observed and
latent variables while the second prior means that additional information on the
value of the discrete (Y ) latent variables encoding our knowledge on the cluster
membership of some samples is tacking into account.
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Fig. 1. Graphic model for the Independent Factor Analysis.

This article is organized as follows. We will first present IFA model estimation
by maximum likelihood in a noiseless setting. In section 3 and 4, the problem of
learning the IFA model with prior knowledge on the mixing process and on the
cluster membership of some examples will then be addressed. In Section 5, the
approach will be illustrated applying it to a railway device diagnosis on which
the impact of using priors will be evaluated. The paper ends with a conclusion.

2 Background on Independent Factor Analysis

ICA and IFA aims at recovering independent latent components from their
observed linear mixtures. In its noiseless formulation (the formulation used
throughout of this paper), the model can be expressed as x = A z with A a
square matrix of size S × S, x the random vector whose elements (x1, . . . ,xS)
are the mixtures and z the random vector whose elements (z1, . . . , zS) are the
latent components. Thanks to the noiseless setting a deterministic relationship
between the distributions of observed and latent variables can be expressed as:
fX (x) = 1

| det(A)|f
Z(A−1 x). The ICA model requires the choice of the probabil-

ity density functions of the sources. They can be fixed by using prior knowledge,
or according to some indicator which allows switching between sub and super
gaussian densities [1]. An alternative solution investigated by several authors,
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so called Independent Factor Analysis (IFA), consists to model each source den-
sity as a mixture of Gaussians (MOG) so that a wide class of densities can be
approximated [4, 5] :

fZs(zs) =

Ks
∑

k=1

πs
kϕ(zs; µ

s
k, νs

k), (1)

with ϕ(.; µ, ν) the density of a gaussian random variable of mean µ and variance
ν. The problem consists of estimating both the mixing matrix, and the MOG
parameters from the observed variables alone. Considering an iid random sample
of size N , the log-likelihood has the form:

L(ψ;X) = −N log(| det(A)|) +

N
∑

i=1

S
∑

s=1

log

(

Ks
∑

k=1

πs
kϕ
(

(A−1xi)s, µ
s
k, νs

k

)

)

. (2)

whereψ is the IFA parameters vectorψ = (A,π1, . . . ,πS ,µ1, . . . ,µS ,ν1, . . . ,νS),
with A the mixing matrix, πs the vector of cluster proportions of source s which
sum to 1, µs and νs the vectors of size Ks containing the means and the variances
of each cluster. The estimation of the IFA model parameters by the maximum
likelihood can be achieved by an alternating optimization strategy. The gradient
algorithm [13] is indeed well suited to optimize the log-likelihood function with
respect to the mixing matrix A when the parameters of the source marginal den-
sities are frozen. Conversely, with A kept fixed, an EM algorithm can be used to
optimize the likelihood function with respect to the parameters of each source.
These remarks naturally lead to develop a Generalized EM algorithm (GEM)
able to simultaneously maximize the likelihood function with respect to all the
model parameters.

3 Constraints on the mixing process

This section investigates the possibility of incorporating independence hypothe-
ses between some latent and observed variables in the ICA model, hypotheses
often supplied by the physical knowledge of the mixing process. The hypothesis
that we consider in this section have the following form: Xh ⊥⊥ Zg. Making this
kind of hypothesis constraints the form of the mixing matrix as it is shown by
the following proposition :

Proposition 1. In the noiseless ICA model, we have :

Xh ⊥⊥ Zg ⇔ Ahg = 0. (3)

Proof. The independence can be defined as Xh ⊥⊥ Zg ⇔ fXh×Zg (xh, zg) =
fXh(xh) × fZg(zg). In the case of noiseless ICA model, the joint probability
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density function on Xh ×Zg is given by :

fXh×Zg (xh, zg) =

∫

RS−1

fXh×Z1×···×ZS (xh, z1, . . . , zS)
S
∏

l=1,l 6=g

dzl (4)

=

∫

RS−1

S
∏

s=1

fZs(zs) × δ(xh − Ah.z)

S
∏

l=1,l 6=g

dzl

= fZg(zg) ×





∫

RS−1

S
∏

l=1,l 6=g

fZl(zl) × δ(xh − Ah.z)dzl



 . (5)

Using (??), we identify Xh ⊥⊥ Zg ⇔ fXh(xh) =
∫

RS−1

∏S
l=1,l 6=g fZl(zl) × δ(xh −

Ah.z)dzl, where Ah. is the hth raw of the mixing matrix A and δ the Dirac
function. The integral must not depend on zg (the gth raw of z), which is possible
only if A satisfies Ahg = 0. �

The estimation problem of the ICA model has to be reformulated to take
account of conditional independencies of some sources given some observed vari-
ables. Indeed, the log-likelihood has to be maximized under the constraint that
some of the mixing coefficients are nulls. The gradient ascent is only achieved
respectively to the non-nulls coefficients. In this case, the initialization and the
update rule of the mixing matrix are given by:

A(0) = C • A(0)

A(q+1) = A(q) + τ C • ∆A(q), (6)

where • denotes the Hadamard product between two matrices (element-by-
element product) and C a binary matrix of which the elements are Chk =
0 if Zk ⊥⊥ Xh, Chk = 1 otherwise.

4 Semi-supervised learning in IFA

The IFA model is often considered within an unsupervised learning framework.
This section considers the learning of this model within partially-supervised
learning context where partial knowledge on the cluster membership of some
samples is available. For that purpose, a generalized likelihood function has to
be defined and an EM algorithm dedicated to its optimization has to be set
up. In the general case, we shall assume a learning set of the form: Xiu =
{(x1, m

Y1
1 , . . . , mYS

1 ), . . . , (xN , mY1

N , . . . , mYS

N )}, where mY1

i , . . . , mYS

i is a set of
basic belief assignments or Dempster-Shafer mass functions [14, 15] encoding our
knowledge on the cluster membership of sample i for each one of the S sources,
Ys = {c1, . . . , cKs

} is the set of all possible clusters for a source s. Depend-
ing on the choice of the mass functions, this formulation can therefore be seen
as addressing a more generale framework which encompasses unsupervised, su-
pervised and partially-supervised learning paradigms as mentioned in Table 1.
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Mass function plausibility

Unsupervised ms
i (Ys) = 1, plsik = 1,∀k

Supervised ms
i (ck) = 1 plsik = 1, plsik′ = 0, ∀k′ 6= k

Partially supervised ms
i (C) = 1 plsik = 1 if ck ∈ C, plsik = 0 if ck /∈ C

Table 1. Different learning paradigms and soft labels.

The concept of likelihood function has strong relations with that of possibil-
ity and, more generally, plausibility, as already noted by several authors [14].
Furthermore, selecting the simple hypothesis with highest plausibility given the
observations Xiu is a natural decision strategy in the belief function framework.
We thus propose as an estimation principle to search for the value of parameter
with maximal conditional plausibility given the data: ψ̂ = argmaxψ plΨ (ψ|Xiu).

A previous work on mixture model estimation with belief function based
labels has already been addressed in [15]. In this context, a likelihood criterion
taking account of soft labels has been defined and an EM algorithm dedicated
to its optimization has been detailed. In this article, we propose an extension
of such study to the IFA model in which partial knowledge on class labels of a
subset of samples is incorporated.

Proposition 2. If the labels are assumed to be independent mutually and inde-
pendent from the samples X that are i.i.d. generated according to the the gener-
ative IFA model setting, then the logarithm of the conditional plausibility of the
model parameters vector ψ given the learning set Xiu is given by:

log
(

plΨ (ψ|Xiu)
)

= −N log(| det(A)|)+

N
∑

i=1

S
∑

s=1

log

(

Ks
∑

k=1

plsikπs
kϕ
(

(A−1xi)s, µ
s
k, νs

k

)

)

+ cst. (7)

where plsik is the plausibility that the sample i belong to cluster k of the latent

variable s, these plausibilities have to be computed from the soft labels mYs

i , and
cst is a constant independent of ψ.

In a semi-supervised learning context, the IFA model is built from a com-
bination of M labeled and N − M unlabeled samples. For labeled samples, the
plausibilities used as labels are crisp and we have plsik = lsik ∈ {0, 1}Ks binary
variables encoding the cluster membership of labeled sample i, lsik = 1 if sample
i comes from cluster ck of sources s and lsik = 0 otherwise. Whereas for unlabeled
samples plsik = 1 for all clusters k and sources s. Consequently, the criterion can
be decomposed into two parts corresponding respectively, to the supervised and
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unsupervised learning examples and criterion 6 can be rewritten as:

L(A;X) = −N log(| det(A)|) +

M
∑

i=1

S
∑

s=1

Ks
∑

k=1

lsik log
(

πs
kϕ
(

(A−1xi)s, µ
s
k, νs

k

))

+

N
∑

i=M+1

S
∑

s=1

log

(

Ks
∑

k=1

πs
kϕ
(

(A−1xi)s, µ
s
k, νs

k

)

)

. (8)

A Generalized EM algorithm (GEM), Algorithm 1 able to simultaneously
maximize the likelihood function with respect to all the model parameters can
be used. This algorithm is similar to EM algorithm used to estimate IFA pa-
rameter in an unsupervised setting, except for the E step, where the posterior
probabilities tsik are only computed for the unlabeled samples and the updating
of the mixing matrix which takes account of the mixing constraints and depends
not only of the latent variables but also of the labels.

Algorithm 1: Pseudo-code for IFA with prior knowledge on labels and
mixing constraints.

Input: Centered observation matrix X, cluster belonging for the M labeled
data lsik, constraints matrix encoding independence hypothesis C.

# Random initialization of parameters vector ψ(0), q = 0
while Convergence test do

Z = X
“

A(q)−1
”t

# Source update

forall s ∈ {1, . . . , S} and k ∈ {1, . . . , Ks} do

t
s(q)
ik = lsik, ∀i ∈ {1, . . . , M}

t
s(q)
ik =

π
s(q)
k ϕ(zis; µ

s(q)
k , ν

s(q)
k )

PKs

k′=1 pls
ik′π

s(q)
k′ ϕ(zis; µ

s(q)
k′ , ν

s(q)
k′ )

, ∀i ∈ {M + 1, . . . , N}

forall s ∈ {1, . . . , S} and k ∈ {1, . . . , Ks} do

π
s(q+1)
k = 1

N

PN

i=1 t
s(q)
ik

µ
s(q+1)
k = 1

P

N
i=1 t

s(q)
ik

PN

i=1 t
s(q)
ik zis

ν
s(q+1)
k = 1

P

N
i=1 t

s(q)
ik

PN

i=1 t
s(q)
ik (zis − µ

s(q+1)
k )2

G = g(q+1)(Z) # Update of G, gs(zis) =
PKs

k=1 t
s(q+1)
ik

(zis−µ
s(q+1)
k

)

ν
s(q+1)
k

,

# Natural gradient

∆A =
“

A(q)−1
”t “

1
N

PN

i=1 g
“

z
(q)
i

”

z
(q)
i

t
− I

”

τ∗ = Linearsearch(A(q),C •∆A) # Linear Search for τ
A(q+1) = A(q) + τ∗.C •∆A # mixing matrix Update
# source normalization to remove scale indetermination
q ← q + 1
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5 Fault diagnosis in railway track circuit

The application considered in this paper concerns fault diagnosis in railway track
circuits. This device will first be described and the problem addressed will be
exposed. An overview of the proposed diagnosis method will be presented.

5.1 Track circuit principle

The track circuit is an essential component of the automatic train control system.
Its main function is to detect the presence or absence of vehicle traffic within
a specific section of railway track. The signalling system uses the occupation of
track section to protect trains from coming into conflict. On French high speed
lines, the track circuit is also a fundamental component of the track/vehicle
transmission system. It uses a specific carrier frequency to transmit coded data
to the train, for example the maximum authorized speed on a given section on
the basis of safety constraints. The railway track is divided into different sec-
tions. Each one of them has a specific track circuit consisting of the following
components:
- A transmitter connected to one of the two section ends, which delivers a fre-
quency modulated alternating current
- The two rails that can be considered as a transmission line;
- At the other end of the track section, a receiver that essentially consists of
a trap circuit used to avoid the transmission of information to the neighboring
section;
-Trimming capacitors connected between the two rails at constant spacing to
compensate for the inductive behavior of the track. Electrical tuning is then
performed to limit the attenuation of the transmitted current and improve the
transmission level. The number of compensation points depends on the carrier
frequency and the length of the track section.
The rails themselves are part of the track circuit, and a train is detected when

Fig. 2. Examples of inspection signals.

its wheels and axles short-circuit the track. The presence of a train in a given
section induces the loss of track circuit signal due to shorting by train wheels.
The drop of the received signal below a preset threshold indicates that the sec-
tion is occupied. The different parts of the system are subject to malfunctions
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(due to aging, ...) that must be detected as soon as possible in order to maintain
the system at the required safety and availability levels. In the most extreme
case, this causes an unfortunate attenuation of the transmitted signal that leads
to the stop of the train. The purpose of diagnosis is to inform maintainers about
track circuit failures on the basis of the analysis of a specific current, recorded by
an inspection vehicle. This paper will focus on trimming capacitors faults that
affect capacitor capacitance. Figure 2 shows an example of the inspection signal
: one of them corresponds to an absence of fault, while the others correspond to
a defective 9th capacitor. The aim of the diagnosis system is to detect the oper-
ating mode of the track circuit and localize the defective capacitor by analyzing
the measurement signal.

5.2 Overview of the diagnosis method

The track circuit can be considered as a large-scale system made up of a series
of spatially related subsystems that correspond to the trimming capacitors. A
defect on one subsystem is represented by a continue value of the capacitance
parameter. The proposed method is based on the following two observations (see
Figure 2). First, the inspection signal has a specific structure, which is a succes-
sion of so many arches as capacitors; an arch can be approximated by a quadratic
polynomial ax2 + bx+ c, next each observed arch is influenced by the capacitors
located upstream from it. The proposed method consists in extracting features
from the measurement signal, and build a generative model as shown in figure
3, where each observed variable Xis corresponds to the coefficients (bis, cis) of
the local polynomial approximating the arch located between two subsystems.
Only two coefficients are used because continuity constraints between each poly-
nomials are used, therefore their exist a linear relationship between the third
coefficient and the three coefficients of the previous polynomial. The continue
latent variable Zis is the capacitance of the ith capacitor and the discrete latent
variable Yis corresponds to the membership of the capacitor state to one of the
three operating modes (fault-free, weak defect, major defect). As there is non
influence between a trimming capacitor state and the inspection signal located
upstream from it, some connections between latent and observed variables are
omitted as it can be seen in figure 3. This information will be also introduced
in the model estimation by the means of constraints on the mixing matrix. One
can clearly see that this model is closely linked to the IFA model given in figure
1. Considering the diagnosis task as a blind source separation problem, the IFA
model can be used to estimate the mixing matrix A and thereby to recover the
latent components (capacitor capacitances) from the observed variables alone.
Moreover, learning the IFA model with mixing constraints can also be considered
to take account of prior information on the mixing process. The cluster mem-
bership of some training samples (represented by the discrete latent variable)
will also be incorporated during the learning phase of the IFA model. As already
explained a piecewise approach is adopted for the signal representation: each
arch was approximated by a second degree polynomial of which two coefficients
are used as observed variables for each node in the model of Figure 1 which lead
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Fig. 3. Generative model for the diagnosis of track circuits represented by a graphical
model including both continuous and discrete latent variables.

to 2 ∗S observed variables. Given an observation matrix, the aim is to recover S

latent variables from 2∗S observed ones with the hope that they will be strongly
correlated with the variables of interest that are the capacitor capacitances. As
prior information on the mixing matrix is available, PCA cannot be used as a
preprocessing because the mixing structure will be lost. 2∗S latent variables are
therefore extracted, S latent variable densities corresponding to capacitors ca-
pacitance are assumed to be mixtures of 3 Gaussian components that correspond
to the three operating modes of the capacitors while the S other variables are
assumed to be noise variables and are thus modeled by simple gaussian random
distributions.

6 Results and discussion

To access the performances of the approach, we considered a track circuit of
S = 18 subsystems (capacitors) and built a database containing noised signals
obtained for different values of the capacitance of each capacitor. 2500 signals are
thus obtained where 500 are used in the training phase while the 2000 others are
employed for the test phase. The experiments aim to illustrate the influence of
both the number of labeled samples and the use of the mixing matrix constraints
on the method results. The model supplies two levels of interpretation, discret
and continuous latent variable but we only supply in this papern the results for
the continuous latent variables. The performances were quantified through the
mean absolute correlation between the true sources and their estimates calcu-
lated on a test set of 2000 samples. Figure 4 shows the mean of the absolute value
of the correlation between estimated latent variables and capacitor capacitances
function of the number of labeled training samples when the mixing matrix is
constrained or not. Note that the case of unlabeled samples without constraints
illustrates the performances of the traditional IFA model (without any prior),
which are very poor as our criterion is sensitive to sources permutation. When
more labeled samples are used the permutations of the sources are avoided and
the performances reach a more interesting level. Twenty random starting points
were used for the GEM algorithm and only the best solution according to the
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Fig. 4. Results of IFA with (- - red), without constraints (– green) when the number
of labeled training samples varies between 0 and 500 and supervised IFA without
constraints (-. -. green). The mean correlation between the estimated sources and the
capacitor capacitances is estimated on a test set of 2000 samples. Twenty random
starting points were used for the GEM algorithm and only the best solution according
to the likelihood was kept.

likelihood was kept. This figure clearly highlights the benefit to use constraints
when the amount of labeled samples is weak. As expected, when the number
of labeled data increases, the mean correlation also increases to reach a maxi-
mal value of 0.84 for the constrained IFA model with 250 labeled sampled and
for the unconstrained one with 350 labeled samples. When a sufficient amount
of labeled samples is provided to the model (> 350), the prior on the mixing
process does not significantly improve the performances. It can also be noticed
that unlabeled samples allows improving the approach performance particularly
when the size of the labeled learning data is weak. An improvement of the global
performance (0.84) would require a non-linear model.

7 Conclusion

In this paper we have proposed a learning of the IFA model by incorporating two
prior knowledge. The first concerns the mixing process whereas the second uses
the cluster membership of some training samples. In this context, a criterion
was defined and a GEM algorithm dedicated to its optimization was given. The
proposed method have been applied to fault diagnosis in railway track circuits.
The diagnosis system aims to recover the latent variables linked to the defects
from their linear observed mixtures (features extracted from the inspection sig-
nal. A comparison between standard and proposed IFA models have been carried
out to show that our approach is able to take advantage of prior information to
significantly improve estimation accuracy and to remove indeterminacy of the
unsupervised IFA such as permutation of sources. Further studies will be car-
ried out to incorporate nonlinearity and also to take account of imprecise and
uncertain cluster memberships when they are supplied by human expert.
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15. E. Côme, L. Oukhellou, T. Denœux and P. Aknin. Learning from partially super-

vised data using mixture models and belief functions. Pattern recognition, 42:334–
348, 2009.

16. A. Cichocki and S. Amari. Adaptive Blind Signal and Image Processing. Wiley,
2002.


