
HAL Id: hal-00430026
https://paris1.hal.science/hal-00430026v1

Submitted on 5 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Software Development Processes with
Multicriteria Methods

Elena Kornyshova, Rebecca Deneckere, Camille Salinesi

To cite this version:
Elena Kornyshova, Rebecca Deneckere, Camille Salinesi. Improving Software Development Pro-
cesses with Multicriteria Methods. Atelier: Méthodes avancée de développement des SI, May 2008,
Fontainebleau, France. pp.2. �hal-00430026�

https://paris1.hal.science/hal-00430026v1
https://hal.archives-ouvertes.fr

Atelier MADSI

Improving Software Development Processes
with Multicriteria Methods

Elena Kornyshova, Rébecca Deneckère, and Camille Salinesi

* Centre de recherche en Informatique, Université de Paris I Panthéon Sorbonne
90, rue de Tolbiac, 75013 Paris, France
kornyshova@univ-paris1.fr, denecker@univ-paris1.fr, salinesi@univ-paris1.fr

RÉSUMÉ. Tous les processus de développement de logiciels comportent des étapes incluant des
choix, des prises de décisions. Il arrive que les méthodes utilisées offrent un certain guidage
à l’ingénieur pour naviguer à travers ces choix. Cependant, de manière très courante, les
arguments permettant de prendre la bonne décision sont extrêmement pauvres et le choix est
finalement effectué de manière intuitive et hasardeuse. Le but de notre travail est d’offrir à
l’ingénieur un guidage plus formel à l’aide de l’intégration et de l’application de méthodes
multicritères dans le processus de développement de logiciels. Cette approche est illustrée
par la sélection et l'application de priorisation aux risques, cas d’utilisation et outils dans le
processus RUP.

ABSTRACT. All software development processes include steps where several alternatives induce
a choice, a decision-making. Sometimes, methodologies offer a way to make decisions.
However, in a lot of cases, the arguments to carry out the decision are very poor and the
choice is made in an intuitive and hazardous way. The aim of our work is to offer a
scientifically founded way to guide the engineer through tactical choices with the application
of multicriteria methods in software development processes. This approach is illustrated with
three cases: risks, use cases and tools within Rational Unified Process.

MOTS-CLÉS : Prise de décisions, Méthodes multicritères, Processus de développement des
logiciels.

KEYWORDS: Decision-making, Multicriteria Methods, Software Development Process.

2 Atelier MADSI

1. Introduction

Researches on several engineering fields (systems engineering, process
engineering, method engineering, and so on) show that there are many development
cases where information system (IS) engineers has critical choices to carry out. As a
matter of fact, they have to deal with a large number of characteristics, artifacts, ideas,
possibilities, etc. Many strategies are offered to manage them and choosing one over
the others is often a very difficult task to handle. Some development activities aim to
sort possible alternatives by prioritizing them. However, these priorities are often
applied intuitively and there is a great need for a better priorisation support.

Generally, a decision-making (DM) problem is defined by the presence of
alternatives. The traditional approach consists in using only one criterion in order to
select alternatives. The usual example is the selection of the projects according to the
net present value. However, using a single criterion is not sufficient when the
consequences of the alternatives to be analyzed are important (Roy, 1996). The goal of
the Multicriteria (MC) DM methods consists in defining priorities between alternatives
(actions, scenarios, projects) according to multiple criteria. In contrast to a
monocriterion approach, MC methods allow a more in-depth analysis of the problem
because they consider various aspects. However, their application has proved more
difficult.

MC DM methods have shown their qualities for over 30 years (Berander, 2005)
and they currently dominate in the field of decision-making (Baudry et al., 2002;
Gomez_Limon et al., 2003). They appeared at the beginning of the Sixties, and their
number and application contexts increase continually. For example, these methods are
employed for requirements priorisation (Weigers, 1999), to choose evolution scenario
(Papadacci et al., 2005), or to make operational decisions (Bouyssous, 2001).

Five families of MC methods can be considered: MAUT (Keeney et al., 1993),
AHP (Saaty, 1980), outranking methods (Roy, 1996), weighting methods (Keeney,
1999), and fuzzy methods (Fuller et al., 1996). These methods will be detailed in the
following.

We propose in this work to improve any development process with the use of
multicriteria methods as a way to choose the most adapted alternative to each situation.
We propose a process, illustrated by an example within Rational Unified Process
(RUP) (Rational Rose, 2007; Kruchten, 1998), which integrates MC methods at the
DM point of the development process. Our aim is to propose a formal approach for
priorisation in order to enhance DM in development process.

The paper is organized as follows: section 2 gives an overview of our proposed
process, which is illustrated in section 3 on three DM points of RUP, and concluded in
section 4.

Improving Software Development Processes with Multicriteria Methods 3

2. Overview of the Multicriteria Methods Integration Process

Our proposal consists of the integration of MC methods in the methodologies of
software development. It is described by an "integration process" (IP) which is
presented on Figure 1.

Identify requirements for priorisation

Specify requirements for MC methods

Select a MC method

Apply the MC method and validate results

Fig. 1. Process of integration of MC methods into software development
methodologies.

The integration process includes four steps: 1) Identify requirements for
priorisation, 2) Specify requirements for MC methods, 3) Select a MC method, and 4)
Apply the MC method and validate results. This IP includes both direct steps and
flashbacks. The former indicate the normal IP development, and the latter enable
returns to the previous steps if necessary.

2.1. Identify Requirements for Priorisation

This step may also be seen as the recognition and description of a specific situation
of DM. The first element to define is the identification of the presence of alternatives.
If a process offers a different manner to fulfill a specific objective, we may see this
process as a "DM point". Identifying these points may be a difficult task to perform
and we suggest asking the following questions:

- “What is the type of guidance to run this task: linear or tree form (set of
possibilities)?”

- “Does the guidance offer arguments (metrics or criteria) to choose between the
alternatives?”

- “Does the guidance offer a way to assign a prioritization to these alternatives?”

There are different kinds of DM problems. They may be classified (according to
the number of criterion and of decision-makers they have) into five types (cf. Figure
2).

The first type presents a monocriterion problem and can be resolved as an
optimization task. In the following, we will focus only on the problems that can be
solved by MC methods (types: 2 to 5).

4 Atelier MADSI

Fig. 2. Typology of decision-making problems.

When the DM point has been identified, the IP step guides the engineer in
describing its situation. B. Roy defines three basic concepts that play a fundamental
role in analysing and structuring decisions in close connection with the decision
process itself (Roy, 2005): alternatives (potential actions), criteria family, and decision
problem. Based on this, we propose to specify decision situation as a <Problem;
Alternative; Criterion> triplet, where problem refers decision problem; alternative
refers the collection of alternatives among which one will be chosen; and criterion
refers the list of criteria by which alternatives will be evaluated. This description will
allow the engineer to define the DM point on a generic level (called level 1 in this
work).

Fig. 3. Model of DM situation.

The decision problem (Roy, 2005) can be defined by the result expected from a
DM. When the result consists in a subset of a potential alternatives (most often one
alternative) then it is a choice problem. When the result represents the potential
alternatives' affectation to some predefined clusters, then it is a classification problem.
When the result consists in a potential alternatives ordered collection, then it is a
ranking problematic. Given that each MC method is able to support a specific type of
decision, it is important to know which type of decision is faced to be able to select the
appropriate DM method. The concept of alternative designates the object of decisions.
Any decision involves at least two alternatives that must be well identified. A criterion
can be any type of information that enables the evaluation of alternatives and their
comparison. Often, development processes already propose a predefined criteria set.
This set can be improved by adapting it to the project at hand. One of the improvement
possibilities takes its roots in two directions: software metrics (Mills, 2005) and
typology of characteristics of IS development project (Kornyshova et al., 2007).

Improving Software Development Processes with Multicriteria Methods 5

Within a MC problem, the metrics and the projects characteristics are considered as
criteria. In a general way, the criteria may be qualitative or quantitative, relative or
absolute, and criteria of time, cost, quality, size, efficiency, and so on.

2.2. Specify Requirement for MC Methods

In order to deal with decisions, we define a second level of decision-making for
selecting a MC method (DM Situation L2). Whereas the level 1 deals with the
priorization problem, the level 2 is addressing the MC methods selection problem to
solve the level 1 one. The identification of requirement for MC methods allows
characterizing the specific parameters required for MC method selection. The problem
is always a choice, the alternatives are MC methods, and the selection is made using
criteria defined as (a) an aggregate view of the requirements for priorisation, and (b)
supplementary criteria referring to the usage of the intended method. The Figure 4
illustrates the model of DM situation applied to the selection of MC method (L2
decision).

Fig. 4. Model of DM situation for selecting MC method.

Several strategies can be applied to specify requirements for MC methods. One of
them is to specify the requirements by problem investigation. It means that the
engineer has to identify the operations that enable to switch from the requirements for
prioritization to the requirements for MC methods. These operations are (i) for
problem: retaining the problem type; (ii) for alternatives: calculating the alternatives
number, retaining alternatives nature, retaining alternatives incompatibility, and (iii)
for criteria: retaining criteria data type, retaining criteria measure scale, and retaining
weighting type. Additional information may also be required to specify the MC
method usage in the given situation: if a DM tool is needed or not, the nature of the
notation, the method easiness, and the level of engineer skills required for applying the
MC method.

6 Atelier MADSI

2.3. Select a MC Method

Each MC method is able to deal with problems with specific characteristics. For
instance, the number and nature of the alternatives, the decision criteria or the presence
of multiple stakeholders with different viewpoints. Besides, the existing methods have
different characteristics such as complexity or ability to deal with quantitative or
qualitative criteria. A few selection approaches were thus developed to guide
specifically MCDM method selection. The state of the art is presented in (Kornyshova
et al., 2008).

Our assumption is that a process guiding the selection of a DM method should (a)
be simple to use, (b) provide results that can be trusted, and therefore (c) take into
account all the relevant aspects of the situation at hand. Our approach focusing on
these relevant aspects focuses on the comparison technique presented in the next sub-
section. The current section focuses on the selection process itself.

We introduce the notion of MC method interface to guide MC method selection.
The interface represents the characteristics of the situations in which a given MC
method can be used and corresponds to the criteria set from the model presented in
Fig. 4. The figure 5 shows the relationship between method and interface and several
MC method family’ interfaces, which are described in the Table 1. In this table, a line
represents a general attribute of the interface (level 2) and a column represents a
particular MC method family.

Fig. 5. MC methods interfaces.

Experience may be sufficient to select a method, in particular if the exact same
situation has already been met.

An MC method may be selected by MC search. This means that the engineer has to
search an appropriated method using L2 criteria identified earlier in order to obtain one
or several MC methods corresponding to his/her requirements for MC method.

If the achievement of the MC search application drives to the selection of several
MC methods, it is possible to choose one of them by weighting. Using this approach,
weights must be given to the L2 criteria. These weights indicate the relative
importance of the L2 criteria to the situation at hand. Then, "0" or "1" values are
allocated to candidate MC methods according to each criterion. The method having the
highest weighted sum of criteria values is then chosen. This strategy is not adequate

Improving Software Development Processes with Multicriteria Methods 7

when the previously selected methods have the same interfaces with reference to
specified requirements.

Table 1. Instantiation of MC methods interfaces.
 MAUT AHP Outranking Weighting Fuzzy methods

1

1. “Problem”
1.1. Choice Yes Yes Yes Yes Yes
1.2. Ranking Yes Yes Yes Yes Yes
1.3. Sorting No No Yes No Yes

2. “Potential actions”
2.1. Number of alternatives Great, medium,

small
Small Great, medium,

small
Great, medium,

small
Different

2.2. Alternatives' set nature discrete discrete discrete discrete Different
2.3. Incompatibility and

conflicts of alternatives
Yes No Yes No Different

3. “Criteria”
3.1. Data type quant., qual. quant., qual. quant., qual. quant. Different
3.2. Measure scale Yes No Yes No Different
3.3. Criteria weighting Yes, simple Yes, interdep Yes, interdep Yes, simple Different

4. “Usage”
4.1. Tool No Yes Yes Yes Different
4.2. Notation Utility function Weighted sum Textual Weighted sum Different
4.3. Easiness of use Difficult Easy Medium Easy Difficult
4.4. Decision maker skills strong medium strong week strong

2.4. Apply the MC Method and Validate Results

The final step of our proposed process is to apply the chosen multicriteria methods
on the identified decision points of the development process. The validation is made
following the matching between the users' requirements and the obtained results. The
MC methods application and its complexity degree depend on the selected method. It
may require additional skills or the acquisition of a tool that supports MC decision
making. The presence of a tool is an important factor for practitioners who are
concerned with the rapid application of a selected MC method. Tools are however,
sometimes costly (purchasing and training), and their acquisition and deployment can
be time consuming.

The engineer may also execute the MC method by achieving manual calculation or
by developing a tool ad hoc. Applying different methods involves different activities.
For instance, the MAUT requires constructing partial utility functions and their
aggregation into a general utility function by addition or multiplication (Keeney et al.,
1993). AHP is based on a dominance hierarchy and carried out by decision-makers'
pair-wise comparisons (Saaty, 1980). Outranking methods are based on analysis of the
degree of dominance of one alternative over another (Bouyssous, 2001; Roy, 1996).
Weighting methods are characterized by a weight assignment being applied to the
decision criteria; and the aggregation of the evaluations is based on a weighted sum

1 Fuzzy methods differ according to the "basic" MC method: MAUT, outranking methods,

and so on. Hence, they have the value "Different".

8 Atelier MADSI

(Keeney, 1999). The fuzzy MC methods employ the fuzzy sets theory to add flexibility
and to enrich methods by fuzzy parameters (Fuller et al., 1996).

3. Application Example with the Rational Unified Process

We propose to illustrate the use of the proposed process by guiding decisions in the
Rational Unified Process (RUP) (Rational Rose, 2007; Kruchten, 1998). The RUP is a
body of software engineering practices, which is maintained on a regular basis to
reflect changes in industry practices. It provides a wealth of guidance on software
development practices that both novice and experienced practitioners can exploit.
However, although many RUP practices call for decision-making, there is very little
information about how to achieve these decisions. All these arguments, together with
the fact that the RUP is widely used in the industry, convinced us that it was a good
candidate to apply our approach and evaluate it. This paper presents details about the
core elements of our proposal, which consists on identifying requirements for decision,
specifying requirements for MC methods, and selecting MC methods.

Guidance is provided by the RUP under the form of descriptions of the tasks that
can be achieved and of the best practices attached to them. Putting ourselves in the
position of a person who wants to prepare a method for a project beforehand, we start
by scanning each task described to find those offering alternatives and some kind of
DM guidance. We chose to study 3 tasks more closely: (a) select and acquire tools, (b)
prioritize use cases, and (c) analyze and prioritize risks2.

Select and Acquire Tools. This task guides the adoption of tools that support
other tasks in the RUP. Tools that need to be selected should fit the particular
requirements of the organization for which the selection is made. Furthermore, special
tools sometimes have to be developed internally to support special needs. One of the
steps in this task is to collect information about tools in order to gain a better
understanding. This information later serve as selection criteria to help the system
engineer decide which tool is right for the project at hand. The criteria for tool
selection are tool features, vendor and cost characteristics. The RUP proposes to grade
each criterion for evaluating candidate tools. However, the guidance stops there and
the engineer is left alone at the moment of the actual decision making.

Analyze and Prioritize Risks. This task describes how to identify, analyse and
prioritize IS project risks. To achieve this, an inventory of what can go wrong within
the project must be made. Events that might decrease the chance of delivering all the
required IS features at the end of the project, at the required level of quality, and on
time/within budget. The RUP guides this by telling how to (i) look within
complementarities and redundancies to see if they would be a source of risk, (ii) put
them in a table known as the Risk List, and (iii) rank risks in decreasing order of
importance and associate them with specific mitigation or contingency actions. Again,

2 Our case study is nominative and simplified. It was elaborated specially for illustrating
suggested approach application.

Improving Software Development Processes with Multicriteria Methods 9

the RUP is very vague with respect to this DM problem: an “order of importance” with
respect to these criteria is not clearly defined.

Prioritize Use Cases. The prioritization of use cases allows deciding their order of
development. The RUP guidance proposes that the software architect selects a certain
number of scenarios and use cases to be analyzed and designed. This proposal is
completed and refined in several ways: by development teams, customer requirements,
and based on COTS products. The selection is then made by characterizing key
factors. For instance, architecturally significant use cases that are poorly understood or
likely to change should be prioritized for clarification and stabilization.

These examples are presented in Table 2., which gives an overview of
requirements for L1 decisions. Some considerations must be made. For instance, the
cost evaluation of tools is carried out according to 5-grade scale (in RUP, - a 3-grade
scale) for facilitating DM.

Table 2. Examples description.
Task (task goal) Criteria Suggested method

Select Tools
(select tools that fit the
need of the project)

tool criteria (features and functions, integration,
applicability, extendibility, team support, usability,
quality, performance, maturity); vendor criteria (stability,
support availability, training, availability, growth
direction); cost (acquisition cost, implementation cost,
maintenance cost)

importance of each feature or
function: ranking following the
next scale: must, nice, not
required; tool and vendor
criteria: 5-grade scale; costs:
low, medium, high

Prioritize Risk
(rank the risks in terms
of their impact on the
project)

deviation of schedule from plan; deviation of effort from
plan; deviation of cost from plan; likelihood of
occurrence; risk exposure; risk magnitude; type: {direct,
indirect}; resource: {organization, funding, people, time,
business risks, technical risks, scope risks, technological
risks, external dependency risks, schedule risks}

ranking according to the risk
exposure; risk magnitude may
be calculated in addition.

Prioritize Use Cases
(select a certain
number of scenarios
and use cases to be
analyzed and
designed)

benefit of the scenario to the stakeholders: {critical,
important, useful}; architectural impact of the scenario:
{none, extends, modifies}; risks to be mitigated:
{performance, availability of a product, suitability of a
component}; completion of the coverage of the
architecture; demonstration to the user

selection following the
architectural significance:
substantial architectural
coverage, specific architectural
point, delicate architectural
point.

Based on the information from Table 2, the strategy by problem investigation
allows identifying the requirements for L2 decisions. A summary of these
requirements is given in the table 3.

Table 3. Identify requirements for MC methods by problem investigation.
Requirements for MC methods Tools Risks Use cases

Operations
Retain problem type choice ranking choice
Calculate alternatives number medium great great
Retain alternatives nature discrete discrete discrete
Retain criteria data type quantitative mixed mixed, fuzzy
Retain weighting type Yes, simple
Usage
Tool yes
Easiness easy
Skills week

10 Atelier MADSI

For selecting MC method, we used the following process. Within the first iteration,
we try to find a MC method that matches all requirements in each case.

Figure 6. illustrates the first iteration. For three considered examples, we have
retained the corresponding MC method characteristics. If a MC method satisfies a
given characteristic, we add "1", if does not satisfy, "0".

Fig. 6. MC method selection results (first iteration).

For tools prioritization, only the weighting method satisfies all requirements. With
reference to risks analysis, two MC methods are found: MAUT and outranking. To
make our final choice, the engineer decides to chose methods offering a tool. So, the
outranking method allowing a tool panel (PROMETHEE I and II, ELECTRE II and III
(Bouyssous, 2001)) is selected. Regarding use cases prioritization, no MC method that
matches requirement for criteria data type. In this case, another set of candidate
methods must be considered (for example, fuzzy methods) or some requirements
removed (if it is possible to remove not-satisfied requirement in the given situation).

For the lack of space, we do not consider the application of selected methods. Our
aim is to illustrate, firstly, the MC method selection based on two levels requirements
and, secondly, the specific situation consideration expressed by these requirements.

4. Conclusion

Decision-making is a difficult process and prioritizing alternatives is a good and
efficient way to improve development processes. This is usually done on an intuitive
way. Our aim was to offer a scientifically founded way to make this priorization by
offering a guidance process to the engineer. This process proposes to use the
integration of multicriteria methods to choose the most adapted alternative to each
situation. We illustrated this process with examples taken within the Rational Unified
Process (RUP) (Rational Rose, 2007; Kruchten, 1998). We showed how to use IP to
integrate MC methods at a specific decision-making point.

Improving Software Development Processes with Multicriteria Methods 11

Our research perspectives include improving the MC methods signatures to better
select them; developing a tool that offers a systematic guidance of IP; defining MC
methods as a method fragments for their integration into any existing methodologies;
and exploring the issue of adapting DM methods to the situation at hand. Several
extensive case studies in the IS engineering area have also been undertaken.

References

Baudry M. and Vincent N., Multicriteria decision making, First annual meeting on health
science and technology, Tours, France, 2002.

Berander P., Requirements Prioritization, In: Engineering and Managing Software
Requirements, Eds A. Aurum, C. Wohlin. Springer, 2005.

Bouyssou D., Outranking methods, In C.A. Encyclopedia of Optimization, Kluwer, 2001.

Fuller R. and Carlsson C., Fuzzy multiple criteria decision making: Recent developments, Fuzzy
Sets and Systems, 78, 1996.

Gómez-Limón J.A., Riesgo L., and Arriaza M., Multi-Criteria Analysis of Factors Use Level:
The Case of Water for Irrigation, Proceedings of the 25th International Conference of
Agricultural Economists, 2003.

Mill E. E., Software Metrics, www.rspa.com/reflib/Process-ProjMetrics.html, 2005.

Keeney R.L., Foundations for Making Smart Decisions, IIE Solutions, 31, No. 5, 1999.

Keeney R.L. and Raiffa H., Decisions with Multiple Objectives: Preferences and Value Trade-
Offs, Cambridge University Press, 1993.

Kornyshova E., Deneckère R., and Salinesi C. Method Chunks Selection by Multicriteria
Techniques: an Extension of the Assembly-based Approach, Situational Method
Engineering (ME), Geneva, Switzerland, 2007.

Kornyshova E. and Salinesi C., Selecting MCDM Techniques: State of the Art, International
Journal of Information Technology and Intelligent Computing (IT&IC), 2, 2008.

Kruchten P., The Rational Unified Process. An Introduction, Addison-Wesley, 1998.

Papadacci E., Salinesi C. et Sidler L., Panorama des approches d’arbitrage dans le contexte de
l'urbanisation du SI, Etat de l'art et mise en perspective des approches issues du monde de
l'ingénierie des exigences. Issue spéciale ISI Journal, 2005.

Rational Rose, http://www-306.ibm.com/software/rational/, Data: May 2007.

Roy B., Multicriteria Methodology for Decision Aiding, Dordrecht, Kluwer Academic
Publishers 1996.

Roy B., Paradigms and challenges, Book chapter, In: Multiple Criteria Decision Analysis - State
of the Art Survey, Springer. editor(s) J. Figueira, S. Greco, M. Ehrgott, 2005.

Saaty T.L., The Analytic Hierarchy Process, NY, McGraw Hill, 1980.

Wiegers K., First Things First: Prioritizing Requirements, Software Development, vol. 7, no. 9,
1999.

