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Abstract

We consider the problem of efficient estimation for the drift of fractional
Brownian motion BH :=

(
BH

t

)
t∈[0,T ]

with hurst parameter H less than 1
2 . We

also construct superefficient James-Stein type estimators which dominate, under
the usual quadratic risk, the natural maximum likelihood estimator.
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1 Introduction

Fix H ∈ (0, 1) and T > 0. Let BH =
{

(BH,1
t , ..., BH,d

t ); t ∈ [0, T ]
}

be a d-dimensional

fractional Brownian motion (fBm) defined on the probability space (Ω,F , P ). That
is, BH is a zero mean Gaussian vector whose components are independent one-
dimensional fractional Brownian motions with Hurst parameter H ∈ (0, 1), i.e., for
every i = 1, ..., d BH,i is a Gaussian process and covariance function given by

E(BH,i
s BH,i

t ) =
1

2

(
s2H + t2H − |t− s|2H

)
, s, t ∈ [0, T ].

For each i = 1, . . . , d,
(
F i
t

)
t∈[0,T ]

denotes the filtration generated by
(
BH,i
t

)
t∈[0,T ]

.

The fBm was first introduced by [5] and studied by [6]. Notice that if H = 1
2 , the
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process B
1
2 is a standard Brownian motion. However, for H 6= 1

2 , the fBm is neither
a Markov process, nor a semi-martingale.

Let M be a subspace of the Cameron-Martin space defined by

M =

{
ϕ : [0, T ] → R

d;ϕit =

∫ t

0
ϕ̇isds with ϕ̇i ∈ L2([0, T ])

and ϕi ∈ I
H+ 1

2

0+

(
L2([0, T ])

)
, i = 1, ..., d

}
.

Let θ =
{
(θ1
t , . . . , θ

d
t ); t ∈ [0, T ]

}
be a function belonging to M . Then, Applying

Girsanov theorem (see Theorem 2 in [9]), there exist a probability measure absolutely
continuous with respect to P under which the process B̃H defined by

B̃H
t = BH

t − θt, t ∈ [0, T ] (1.1)

is a fBm with Hurst parameter H and mean zero. In this case, we say that, under
the probability Pθ, the process BH is a fBm with drift θ.

We consider in this paper the problem of estimating the drift θ of BH under
the probability Pθ, with hurst parameter H < 1/2. We wish to estimate θ under the
usual quadratic risk, that is defined for any estimator δ of θ by

R(θ, δ) = Eθ

[∫ T

0
||δt − θt||2dt

]

where Eθ is the expectation with respect to a probability Pθ.
Let X = (X1, . . . ,Xd) be a normal vector with mean θ = (θ1, . . . , θd) ∈ R

d

and identity covariance matrix σ2Id. The usual maximum likelihood estimator of θ
is X itself. Moreover, it is efficient in the sense that the Cramer-Rao bound over all
unbiased estimators is attained by X. That is

σ2d = E
[
‖X − θ‖2

d

]
= inf

ξ∈S
E
[
‖ξ − θ‖2

d

]
,

where S is the class of unbiased estimators of θ and ‖.‖d denotes the Euclidean norm
on R

d.
[12] constructed biased superefficient estimators of θ of the form

δa,b(X) =

(
1 − b

a+ ||X||2
)
X
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for a sufficiently small and b sufficiently large when d ≥ 3. [4] sharpened later this
result and presented an explicit class of biased superefficient estimators of the form

(
1 − a

||X||2d

)
X, for 0 < a < 2(d − 2).

Recently, an infinite-dimensional extension of this result has been given by
[10]. The authors constructed unbiased estimators of the drift (θt)t∈[0,T ] of a con-

tinuous Gaussian martingale (Xt)t∈[0,T ] with quadratic variation σ2
t dt, where σ ∈

L2([0, T ], dt) is an a.e. non-vanishing function. More precisely, they proved that
θ̂ = (Xt)t∈[0,T ] is an efficient estimator of (θt)t∈[0,T ]. On the other hand, using Malli-
avin calculus, they constructed superefficient estimators for the drift of a Gaussian
processe of the form:

Xt :=

∫ t

0
K(t, s)dWs, t ∈ [0, T ],

where (Wt)t∈[0,T ] is a standard Brownian motion and K(., .) is a deterministic kernel.
These estimators are biased and of the form Xt + Dt logF , where F is a positive
superharmonic random variable and D is the Malliavin derivative.

In Section 3, we prove, using technic based on the fractional calculus and
Girsanov theorem, that θ̂ = BH is an efficient estimator of θ under the probability
Pθ with risk

R(θ,BH) = Eθ

[∫ T

0
‖BH

t − θt‖2dt

]
=

T 2H+1

2H + 1
d.

Moreover, we will establish that θ̂ = BH is a maximum likelihood estimator of θ.
In Section 4, we construct a class of biased estimators of James-Stein type of

the form

δ(BH)t =

(
1 − at2H

(
r(‖BH

t ‖2)

‖BH
t ‖2

))
BH
t , t ∈ [0, T ].

We give sufficient conditions on the function r and on the constant a in order that
δ(BH) dominates BH under the usual quadratic risk i.e.

R
(
θ, δ

(
BH
))
< R

(
θ,BH

)
for all θ ∈M. (1.2)

2 Preliminaries

This section contains the elements from fractional calculus that we will need in the
paper.
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The fractional Brownian motion BH has the following stochastic integral representa-
tion (see for instance, [1], [8])

BH,i
t =

∫ t

0
KH(t, s)dW i

s , i = 1, ..., d; t ∈ [0, T ] (2.3)

where W = (W 1, ...,W d) denotes the d-dimensional Brownian motion and the kernel
KH(t, s) is equal to

cH(t− s)H−
1
2 + cH(

1

2
−H)

∫ t

s
(u− s)H−

3
2

(
1 − (

s

u
)

1
2
−H
)
du if H ≤ 1

2

cH(H − 1

2
)

∫ t

s
(u− s)H−

3
2

( s
u

)H−
1
2
du if H >

1

2
,

if s < t and KH(t, s) = 0 if s ≥ t. Here cH is the normalizing constant

cH =

√
2HΓ(3

2 −H)

Γ(H + 1
2)Γ(2 − 2H)

where Γ is the Euler function.
We recall some basic definitions and results on classical fractional calculus which we
will need. General information about fractional calculus can be found in [11].
The left fractional Riemann-Liouville integral of f ∈ L1((a, b)) of order α > 0 on
(a, b) is given at almost all x ∈ (a, b) by

Iαa+f(x) =
1

Γ(α)

∫ x

a
(x− y)α−1f(y)dy.

If f ∈ Iαa+(Lp(a, b)) with 0 < α < 1 and p > 1 then the left-sided Riemann-Liouville
derivative of f of order α defined by

Dα
a+f(x) =

1

Γ(1 − α)

(
f(x)

(x− a)α
+ α

∫ x

a

f(x) − f(y)

(x− y)α+1
dy

)

for almost all x ∈ (a, b).
For H ∈ (0, 1), the integral transform

(KHf)(t) =

∫ t

0
KH(t, s)f(s)ds
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is a isomorphism from L2([0, 1]) onto I
H+ 1

2

0+

(
L2([0, 1])

)
and its inverse operator K−1

H

is given by

K−1
H f = tH−

1
2D

H−
1
2

0+ t
1
2
−Hf ′ for H > 1/2, (2.4)

K−1
H f = t

1
2
−HD

1
2
−H

0+ tH−
1
2D2H

0+ f for H < 1/2. (2.5)

Moreover, for H < 1
2 , if f is an absolutely continuous function then K−1

H f can be
represented of the form ( see [9] )

K−1
H f = tH−

1
2 I

1
2
−H

0+ t
1
2
−Hf ′. (2.6)

3 The maximum likelihood estimator and Cramer-Rao

type bound

We consider a function θ =
(
θ1, . . . , θd

)
belonging to M . An estimator ξ = (ξ1, . . . , ξd)

of θ = (θ1, . . . , θd) is called unbiased if, for every t ∈ [0, T ]

Eθ(ξ
i
t) = θit, i = 1, . . . , d

and it is called adapted if, for each i = 1, . . . , d, ξi is adapted to
(
F i
t

)
t∈[0,T ]

.

Since for any i = 1, ..., d, the function θi is deterministic and

∫ T

0
(K−1

H (θi)(s))2ds <∞,

then Girsanov theorem yields that there exists a probability measure Pθ absolutely

continuous with respect to P under which the process B̃H :=
(
B̃H
t ; t ∈ [0, T ]

)
defined

by

B̃H
t = BH

t − θt, t ∈ [0, T ] (3.7)

is a d-dimensional fBm with Hurst parameter H and mean zero. Moreover the Gir-
sanov density of Pθ with respect to P is given by:

dPθ
dP

= exp

[
d∑

i=1

(∫ T

0
K−1
H (θi)(s)dW i

s −
1

2

∫ T

0
(K−1

H (θi)(s))2ds

)]
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and

B̃H
t =

∫ t

0
KH(t, s)dW̃s

where W̃ is a d-dimensional Brownian motion under the probability Pθ and

W̃ i
t = W i

t −
∫ t

0
K−1
H (θi)(s)ds, i = 1, ..., d; t ∈ [0, T ].

The equation (3.7) implies that BH is an unbiased and adapted estimator of θ under
probability Pθ. In addition, we obtain the Cramer-Rao type bound:

R(H, θ̂) := R(θ,BH) =

∫ T

0
Eθ‖B̃H

t ‖2dt = d

∫ T

0
t2Hdt =

T 2H+1

2H + 1
d.

The first main result of this section is given by the following proposition which
asserts that θ̂ = BH is an efficient estimator of θ.

Theorem 1 Assume that H < 1
2 . If ξ is an unbiased and adapted estimator of θ,

then

Eθ

∫ T

0
‖ξt − θt‖2dt ≥ R(H, θ̂). (3.8)

Proof: Since ξ is unbiased, then for every ϕ ∈M we have

Eϕ(ξjt ) = Eϕ(ϕjt ), j = 1, . . . , d.

Let ϕ = θ + εψ with ψ ∈M and ε ∈ R. Then for every t ∈ [0, T ] and j ∈ {1, . . . , d},
we have

Eθ+εψ(ξjt ) = Eθ+εψ(θjt + εψjt )

= Eθ+εψ(θjt ) + εψjt .
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This implies that for every j = 1, . . . , d

ψjt =
d

dε /ε=0
Eθ+εψ(ξjt − θjt )

= E

(
d

dε /ε=0
exp

[
d∑

i=1

(∫ t

0
K−1
H (θi + εψi)(s)dW i

s

−1

2

∫ t

0
(K−1

H (θi + εψi)(s))2)ds

)]
(ξjt − θjt )

)

= Eθ

(
d∑

i=1

[∫ t

0
K−1
H (ψi)(s)dW i

s −
∫ t

0
K−1
H (ψi)(s)K−1

H (θi)(s)ds

]

× (ξjt − θjt )

)

= Eθ

(
d∑

i=1

[∫ t

0
K−1
H (ψi)(s)dW̃ i

s

]
(ξjt − θjt )

)

= Eθ

([∫ t

0
K−1
H (ψj)(s)dW̃ j

s

]
(ξjt − θjt )

)
.

Applying Cauchy-Schwarz inequality in L2(Ω, dPθ), we obtain that for every t ∈ [0, T ]

‖ψt‖2 =
d∑

j=1

(ψjt )
2 ≤

d∑

j=1

Eθ

(
(ξjt − θjt )

2
)
Eθ

([∫ t

0
K−1
H (ψj)(s)dW̃ j

s

]2
)

=

d∑

j=1

Eθ

[(
(ξjt − θjt )

2
)∫ t

0
(K−1

H (ψj)(s))2ds

]
.

We take for each j = 1, . . . , d, ψjt = t2H . Since t −→ t2H is absolutely continuous
function, then by (2.6), a simple calculation shows that

K−1
H (t2H) = 2HtH−

1
2 I

1
2
−H

0+ tH−
1
2

=
2Hβ(1

2 −H,H + 1
2)

Γ(1
2 −H)

tH−1/2

= 2H(Γ(
1

2
+H))tH−1/2.

It is known that

0 ≤ Γ(z) ≤ 1 for every z ∈ [1, 2]. (3.9)
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Combining the facts that zΓ(z) = Γ(z + 1), z > 0, 2H ≤ (H + 1
2)2 and (3.9), we

obtain

dt2H = ‖ψt‖2 ≤ (Γ(
3

2
+H))2Eθ

(
‖ξt − θt‖2

)
≤ Eθ

(
‖ξt − θt‖2

)
.

Hence, by an integration with respect to dt, we get

R(H, θ̂) =
T 2H+1

2H + 1
≤ Eθ

∫ T

0
‖ξt − θt‖2dt.

Therefore (3.8) is satisfied.

Corollary 1 The process θ̂ = BH is a maximum likelihood estimator of θ.

Proof: We have for every ψ ∈M

d

dε/ε=0
exp

[
d∑

i=1

∫ t

0
K−1
H (θ̂i + εψi)(s)dW i

s −
1

2

∫ t

0
(K−1

H (θ̂i + εψi)(s))2)ds

]
= 0.

Hence
d∑

i=1

(∫ t

0
K−1
H (ψi)(s)dW i

s −
∫ t

0
K−1
H (ψi)(s)K−1

H (θ̂i)(s)ds

)
= 0.

Which implies that for every i = 1, ..., d

E

(∫ t

0
K−1
H (ψi)(s)dW i

s −
∫ t

0
K−1
H (ψi)(s)K−1

H (θ̂i)(s)ds

)2

= 0.

Then, for each i = 1, ..., d

W i
t =

∫ t

0
K−1
H (θ̂i)(s)ds, t ∈ [0, T ].

Therefore by (2.3), we obtain that BH = θ̂.

4 Superefficient James-Stein type estimators

The aim of this section is to construct superefficient estimators of θ which domi-
nate, under the usual quadratic risk, the natural MLE estimator BH . The class of
estimators considered here are of the form

δ(BH)t = BH
t + g(BH

t , t), t ∈ [0, T ] (4.10)
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where g : R
d+1 −→ R

d is a function. The problem turns to find sufficient conditions
on g such that R

(
θ, δ(BH)

)
<∞ and the risk difference is negative, i.e.

∆R(θ) = R
(
θ, δ(BH)

)
−R

(
θ,BH

)
< 0.

In the sequel we assume that the function g satisfies the following assumption:

(A)

{
Eθ

[∫ T
0 ||g(BH

t , t)||2d dt
]
<∞,

the partial derivatives ∂ig
i := ∂gi

∂xi , i = 1, . . . , n of g exist.

Then R
(
θ, δ(BH)

)
<∞. Moreover

∆R(θ) = Eθ

[∫ T

0
||BH

t + g(BH
t , t) − θt||2d − ||BH

t − θt||2ddt
]

= Eθ

[∫ T

0
||g(BH

t , t)||2d + 2
d∑

i=1

(
gi(BH

t , t)(B
H,i
t − θit)

)
dt

]
.

In addition,

Eθ

∫ T

0

d∑

i=1

(
gi(BH

t , t)(B
H,i
t − θit)

)
dt

=

d∑

i=1

∫ T

0
(2πt2H)−

d
2

(∫

Rd

gi(x1, . . . , xd, t)(xi − θit)

× e
−

Pd
j=1(xj−θ

j
t
)2

2t2H dx1 . . . dxd

)
dt

=

d∑

i=1

∫ T

0
(2πt2H)−

d
2

(∫

Rd

t2H∂ig
i(x1, . . . , xd, t)

× e
−

Pd
j=1(xj−θ

j
t
)2

2t2H dx1 . . . dxd

)
dt

=
d∑

i=1

∫ T

0

(
t2HEθ∂ig

i(BH
t , t)

)
dt = Eθ

[
d∑

i=1

∫ T

0
t2H∂ig

i(BH
t , t)dt

]
.

Consequently, the risk difference equals

∆R(θ) = Eθ

[∫ T

0

(
||g(BH

t , t)||2 + 2t2H
d∑

i=1

∂ig
i(BH

t , t)

)
dt

]
. (4.11)
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We can now state the following theorem.

Theorem 2 Let g : R
d+1 −→ R

d be a function satisfying (A). A sufficient conditions
for the estimator

(
BH
t + g(BH

t , t)
)
t∈[0,T ]

to dominate BH under the usual quadratic

risk is

Eθ

[∫ T

0

(
||g(BH

t , t)||2 + 2t2H
d∑

i=1

∂ig
i(BH

t , t)

)
dt

]
< 0.

As an application, take g of the form

g(x, t) = at2H
r
(
‖x‖2

)

‖x‖2
x, (4.12)

where a is a constant strictly positive and r : R
+ → R

+ is bounded derivable function.
The next lemma give a sufficient condition for g in (4.12) to satisfies the assumption
(A).

Lemma 1 If d ≥ 3 and H < 1
2 then

E

[∫ T

0

1

‖BH
t ‖2

dt

]
<∞. (4.13)

Proof: Firstly the integral given by (4.13) is well defined, because

(dt × P )
(
(t, w);BH

t (w) = 0
)

= 0

where (dt× P ) is the product measure.
Using the change of variable and d ≥ 3 we see that

E

∫ T

0

1

‖BH
t ‖2

dt =

∫ T

0

dt

t2H

∫

Rd

e−
‖y‖2

2√
2π‖y‖2

dy ≤ C

∫ T

0

1

t2H
dt,

where C is a constant depending only on d. Furthermore, since H < 1
2 then (4.13)

holds.

Theorem 3 Assume that d ≥ 3. If the function r, the constant a and the parameter
H satisfy:

i) 0 ≤ r(.) ≤ 1

ii) r(·) is differentiable and increasing

10



iii) 0 < a ≤ 2(d− 2) and H < 1/2,

then the estimator

δ(BH) = BH
t − at2H

r
(
‖BH

t ‖2
)

‖BH
t ‖2

BH
t , t ∈ [0, T ].

dominates BH .

Proof: It suffices to prove that ∆R(θ) < 0. From (4.11) and the hypothesis i) and
ii) we can write

∆R(θ) = aEθ

[∫ T

0
t4H

(
ar2(‖BH

t ‖2)

‖BH
t ‖2

− 2(d− 2)
r(‖BH

t ‖2)

‖BH
t ‖2

− 4r′(‖BH
t ‖2)

)
dt

]

≤ a [a− 2(d− 2)]Eθ

[
a

∫ T

0
t4H

r(‖BH
t ‖2)

‖BH
t ‖2

]
.

Combining this fact with the assumption iii) yields that the risk difference is negative.
Which proves the desired result.
For r = 1, we obtain a James-Stein type estimator:

Corollary 2 Let d ≥ 3, 0 < H < 1
2 and 0 < a ≤ 2(d− 2). Then the estimator

(
1 − at2H

‖BH
t ‖2

)
BH
t , t ∈ [0, T ]

dominates BH .

Acknowledgement

The authors would like to thank the editor Hira Koul and referees for several helpful
corrections and suggestions that led to many improvements in the paper.

References
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