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Abstract. Clustering in high-dimensional spaces is nowadays a recurrent problem
in many scientific domains but remains a difficult problem. This is mainly due to
the fact that high-dimensional data usually live in low-dimensional subspaces hid-
den in the original space. This paper presents a model-based clustering approach
which models the data in a discriminative subspace with an intrinsic dimension
lower than the dimension of the original space. An estimation algorithm, called
Fisher-EM algorithm, is proposed for estimating both the mixture parameters and
the discriminative subspace. Experiments show that the proposed approach out-
performs existing clustering methods and provides a useful representation of the
high-dimensional data.

Keywords: Model-based clustering, dimension reduction, discriminative subspaces,
latent mixture model.

1 Introduction

In many scientific domains, the measured observations are nowadays high-
dimensional and clustering such data is a challenging problem. Indeed, the
most popular clustering methods are based on the Gaussian mixture model
and show a disappointing behavior in high-dimensional spaces. They suf-
fer from the well-known curse of dimensionality [1] which is mainly due in
clustering to the specificities of high-dimensional data. On the one hand,
high-dimensional data have intrinsic dimension lower than the dimension of
the original space and, on the other hand, they can be noisy.

Since the dimension of observed data is usually higher than its intrinsic
dimension, it is theoretical possible to reduce the dimension of the origi-
nal space without loosing any information. Therefore, dimension reduction
methods are traditionally used before the clustering step. Feature extraction
methods such as Principal Component Analysis (PCA) [2] or feature selec-
tion methods (see [3] for a review) are very popular. However, these methods
of dimension reduction do not consider the classification task and provide a
sub-optimal data representation for the clustering step. Only few approaches
combine dimension reduction and classification. Fisher Discriminant Analy-
sis (FDA) (see Chap. 4 of [4]) is one of them in the supervised classification
framework. FDA is a powerful tool for finding the subspace which best dis-
criminates the groups and reveals the structure of the data. This subspace is
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spanned by the discriminative axes which maximize the ratio of the between
class variance and the within class variance.

This work proposes a method which adapts traditional procedures of clus-
tering based on the Gaussian Mixture Model (GMM) for modeling and classi-
fying data in discriminative subspaces. The approach proposed in this paper
has three main objectives: firstly, it aims to improve clustering performances
with the use of discriminative subspaces, secondly, it avoids estimation prob-
lems linked to high dimensions and, finally, it provides a low-dimensional
discriminative representation of the data.

2 Model-based clustering in discriminative subspaces

The main idea of our approach is that real data live in a latent subspace
with an intrinsic dimension lower than the dimension of the observed data
and that a subspace of K − 1 dimensions is theoretically sufficient to dis-
criminate K groups. We therefore propose to model and classify the data in
a discriminative subspace with K − 1 dimensions. The proposed approach
will thus provide an optimal partition of the data as well as a discriminative
representation of the partition.

2.1 The latent mixture model

Clustering aims to divide a given dataset of n observations {y1, . . . , yn} into
K homogeneous groups (see [5] for a review). In this work, the observed data
{y1, . . . , yn} ∈ R

p are assumed to be a linear transformation of latent (non
observed) data {x1, . . . , xn} ∈ R

d:

y = x V + ǫ,

where x ∈ R
d, y ∈ R

p, d < p, V is the d × p transformation matrix and
ǫ ∈ R

p is a noise term. Popular clustering techniques use Gaussian Mixture
Models (GMM), which assume that each class is represented by a Gaussian
probability density. Let us therefore assume that the data {x1, . . . , xn} are
independent realizations of a random vector X ∈ R

d with density function f :

f(x) =

K∑

k=1

πkφ(x, θk),

where K is the number of clusters, φ is the Gaussian density function param-
eterized by θk = (µk, Σk), and πk, µk and Σk are respectively the proportion,
the mean and the covariance matrix of the kth component of the mixture.
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2.2 Estimation procedure: the Fisher-EM algorithm

The parameters of a mixture model are usually estimated by the maximum
likelihood method through the iterative Expectation-Maximization (EM) al-
gorithm [6]. Since, in this work, the data are not modelled in the space of
observed data but in a latent subspace of dimension d < p, the estimation
procedure has to be modified to take into account these specificities. Due to
the nature of the model described above, the estimate procedure alternates
between three steps: an E-step in which posterior probabilities of each ob-
servation are computed, a F-step which estimates the inverse transformation
conditionally to the posterior probabilities and a M-step in which parame-
ters of the mixture model described in the latent subspace of dimension d

are determined by maximizing the conditional likelihood. This estimation
procedure, called hereafter Fisher-EM algorithm, has the following form:

E-step: This step computes, at each iteration (q), the posterior probabili-
ties tik that an observation belongs to the kth component of the mixture (in
the subspace of dimension d):

t
(q)
ik =

π
(q−1)
k φ(xi, θ

(q−1)
k )

∑K

k=1 π
(q−1)
k φ(xi, θ

(q−1)
k )

,

where φ is the Gaussian density, and π
(q−1)
k and θ

(q−1)
k are the parameters of

the kth mixture component estimated in the latent subspace at the previous
iteration.

F-step: At the iteration (q), this step computes the discriminative axes, so-
called Fisher axes, by estimating the inverse transformation conditionally to
the posterior probabilities tik. These axes are determined by maximizing the
ratio of the between-class variance and the within-class variance. According
to the Huygens’ theorem, this optimization problem resumes to:

maxu

utB(q)u

utSu
,

where S = 1
n

∑n

i=1(yi −m)t(yi −m) and m = 1
n

∑n

i=1 yi are respectively the
covariance matrix and the mean of the observed data, and:

B(q)(tik) =
1

n

K∑

k=1

n
(q)
k (m

(q)
k − m)t(m

(q)
k − m),

n
(q)
k =

N∑

i=1

t
(q)
ik , m

(q)
k =

1

N

N∑

i=1

t
(q)
ik yi .

The solutions of this optimization problem are the eigenvectors associated to
the K − 1 largest eigenvalues of the matrix S−1B(q).
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M-step: This step estimates the parameters of the mixture model by max-
imizing the conditional likelihood: the prior probabilities πk, the means µk

and the covariance matrix Σk of the K components in the space of the Fisher
discriminative axes:

µ
(q+1)
k =

∑N

i=1 t
(q)
ik x

(q)
i∑N

i=1 t
(q)
ik

, π
(q+1)
k =

∑N

i=1 t
(q)
ik

N

Σ
(q+1)
k =

∑N

i=1 t
(q)
ik

(x
(q)
i − µk)t(x

(q)
i − µk)

∑N

i=1 t
(q)
ik

,

with x
(q)
i = y U (q) where U (q) is the p×d inverse transformation matrix which

contains the eigenvectors associated with the d largest eigenvalues of S−1B(q).
Traditionally, such an estimation approach on high-dimensional data yields
to problems for estimating the mixture model parameters. Conversely, the
current approach computes very few parameters since their estimates are
determined in a subspace of dimension d = K−1 smaller than the dimension
of the original space, and independent from the dimension of the original
space.

3 Experimental results

In this section, the Fisher EM algorithm is applied on simulated data. The
following experiments aim to highlight the main features of the proposed
clustering method: visual representation and clustering performance in high-
dimensions.

3.1 Visual representation of the partition

For this first experiment, 600 observations have been simulated following the
mixture model considered in the previous section. The simulated dataset
is made of 3 groups and each group is modeled by a Gaussian density in
a 2-dimensional space completed by 23 dimensions of Gaussian noise. Fig-
ure 1(a) shows the simulated data in their 2-dimensional latent space whereas
Figure 1(b) presents the projection of the 25-dimensional observed data on
the two first principal components of PCA. As we can observe, the PCA repre-
sentation of the data is actually not well suited for clustering these data even
so it exists a representation which discriminates perfectly the three groups.
Figure 1(c) shows the partition provided by the Fisher-EM algorithm on the
estimated discriminative subspace. On the one hand, the result of the Fisher-
EM algorithm appears to be a very informative representation. On the other
hand, the partition provided by the Fisher-EM algorithm is an optimal par-
tition (96% correct) since it equals the Bayes’ classifier (computed with the
true densities).
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(a) Data in the latent space. (b) Projection on 2 axis of PCA. (c) Estimated Fisher axis.

Fig. 1. Clustering of simulated data ∈ R
25 with an intrinsic dimension equals to 2.

3.2 Effect of the dimension

This second experiment aims to compare on a simulated dataset the perfor-
mances of the Fisher-EM algorithm with traditional clustering methods such
as the classical EM algorithm, the EM algorithm calculated on the principal
components of PCA (hereafter PCA+EM) and the k-means algorithm. As
before, the simulated dataset is made of 3 groups where each group is mod-
eled by a Gaussian density in a 2-dimensional space completed by 1 to 15
dimensions of Gaussian noise. The same initial conditions have been used
for each method and we have chosen, for this study, an initialization on pa-
rameters proposed by McLachlan and Peel [7]. Finally, the experiment has
been repeated 20 times in order to average the classification results. Fig-
ure 2 presents the effect of the dimension on the classification performances
obtained with Fisher-EM, EM, PCA+EM and k-means. Firstly, the perfor-
mances of EM and PCA+EM algorithms decrease proportionally when the
dimension increases. Secondly, k-means algorithm has a lower performance
than other methods in the initial space and becomes worse when the dimen-
sion increases. Finally, the dimension appears to have no significant influence
on the Fisher-EM performances. The correct classification rate is 0.90 on av-
erage whatever the dimension is. However, Fisher-EM turns out to have the
same weakness as the EM algorithm: it has a slight instability due to the ini-
tial conditions. Nevertheless, the correct classification rate of the Fisher-EM
algorithm remains very satisfying for the whole range of dimensions.

4 Conclusion

In this work, a model-based clustering method in Fisher discriminative sub-
spaces has been proposed. This approach is based on a latent mixture model
in a discriminative subspace. An EM-like estimation procedure, called Fisher-
EM algorithm, is proposed to estimate both the discriminative subspace and
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Fig. 2. Influence of the dimension on the correct classification rate for Fisher-EM
(1-black), EM (2-red), PCA+EM (3-green) and k-means (4-blue).

the mixture model parameters. Experiments on simulated data have shown
that the proposed approach outperforms traditional clustering methods and
that the Fisher-EM algorithm seems not sensitive to high dimensions. More-
over, the proposed latent mixture model is parsimonious since the number
of estimated parameters is independent of the initial dimension of the data.
Finally, this approach provides as well a comprehensive representation of the
structure of high-dimensional data.
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