index - Interférométrie Accéder directement au contenu

Derniers dépôts, tout type de documents

We present a design strategy for grating magneto-optical traps (GMOTs). It takes the three most relevant optical properties for laser cooling (radiation pressure balance, specular reflection cancellation, and diffracted polarization) to build a scalar figure of merit. We use a rigorous coupled wave analysis (RCWA) simulation to find a geometry that maximizes this figure of merit. We also introduce a criterion that takes into account the robustness of the manufacturing processes to select a geometry that is reliable to manufacture. Finally, we demonstrate that the fabricated grating exhibits the expected optical properties and achieves typical GMOT performance.

Continuer la lecture Partager

We have observed the decoherence of a lithium atomic wave during its propagation in the presence of the radiation emitted by tungsten-halogen lamps, i.e., decoherence induced by blackbody radiation. We used our atom interferometer to detect this decoherence by measuring the atom fringe-visibility loss. The absorption of a photon excites the atom, which spontaneously emits a fluorescence photon. The momenta of these two photons have random directions, and this random character is the main source of decoherence. All previous similar experiments used small-bandwidth coherent excitation by a laser, whereas incoherent radiation involves several technical and conceptual differences. Our approach is interesting as blackbody radiation is omnipresent and decoherence should be considered if particles resonant to electromagnetic fields are used.

Continuer la lecture Partager

This document presents a summary of the 2023 Terrestrial Very-Long-Baseline Atom Interferometry Workshop hosted by CERN. The workshop brought together experts from around the world to discuss the exciting developments in large-scale atom interferometer (AI) prototypes and their potential for detecting ultralight dark matter and gravitational waves. The primary objective of the workshop was to lay the groundwork for an international TVLBAI proto-collaboration. This collaboration aims to unite researchers from different institutions to strategize and secure funding for terrestrial large-scale AI projects. The ultimate goal is to create a roadmap detailing the design and technology choices for one or more km-scale detectors, which will be operational in the mid-2030s. The key sections of this report present the physics case and technical challenges, together with a comprehensive overview of the discussions at the workshop together with the main conclusions.

Continuer la lecture Partager

We report here on the realization of light-pulse atom interferometers with large-momentum-transfer atom optics based on a sequence of Bragg transitions. We demonstrate momentum splitting up to 200 photon recoils in an ultracold atom interferometer. We highlight a new mechanism of destructive interference of the losses leading to a sizable efficiency enhancement of the beam splitters. We perform a comprehensive study of parasitic interferometers due to the inherent multiport feature of the quasi-Bragg pulses. Finally, we experimentally verify the phase shift enhancement and characterize the interferometer visibility loss

Continuer la lecture Partager

Mon travail de thèse, réalisé au LCAR, contribue au développement de nouveaux interféromètres atomiques fondés sur l'utilisation de condensats de Bose-Einstein et de réseaux optiques. Ces nouveaux interféromètres sont envisagés afin d'améliorer la sensibilité de capteurs inertiels, pour tester la gravitation ou de nouveaux modèles en physique des particules. La spécificité de l'interféromètre en construction au LCAR est sa grande séparation spatiale permettant de mettre en forme les potentiels électromagnétiques et gravitationnels à proximité des bras de l'interféromètre. Cette approche ouvre la voie à de nouvelles mesures en physique fondamentale et en métrologie. Notre dispositif est dimensionné afin de réaliser des tests de neutralité atomique avec une nouvelle méthode fondée sur la phase d'Aharonov-Bohm Scalaire. Une amélioration de plusieurs ordres de grandeur par rapport aux limites actuelles est attendue. Dans mon manuscrit de thèse, je commence par exposer les principes d'interférométrie atomique qui ont guidé le dimensionnement de notre interféromètre. Je décris la source d'atomes ultra-froids et les premiers résultats de fontaine atomique obtenus avec nos condensats de Bose-Einstein. Pour réaliser nos interféromètres atomiques, les condensats sont manipulés par des réseaux optiques dans le régime de quasi-Bragg. Afin de mieux comprendre les limites de ces séparatrices atomiques, j'ai mené une étude numérique et expérimentale que j'expose dans le troisième chapitre. Je commente notamment l'impact lié à la nature multi-ports des interféromètres atomiques réalisés dans ce régime, qui mènent à des interféromètres parasites pouvant limiter l'estimation de la phase. Enfin, lors de ma thèse j'ai démontré des mesures de déphasage interférométrique avec une séparation en impulsion correspondant à l'impulsion de 170 photons. Ce transfert d'impulsion est au niveau de l'état de l'art pour ce type de dispositif et constitue un prérequis pour l'obtention des séparations spatiales envisagées.

Continuer la lecture Partager

Sujets

Diffraction de Bragg Atom Polarisabilité Damping Lithium Optique atomique Atome de lithium CAVITY Cold atoms Atomic interferometry Glory oscillations Anisotropy Aharonov-Bohm Atom optics Diffraction atomique par laser Diffraction d'une onde atomique Sagnac effect Muonic hydrogen Amortissement Aharonov-Bohm effect Coherence Interférométrie atomique Fringe visibility Bose Einstein condensate Lithium atoms Bose-Einstein condensate Birefringence Bragg diffraction Frequency metrology Mesures de précision Vibrations Fringe phase shift Ring cavity Zeeman effect Effet Aharonov-Bohm Fringe contrast Polarizability Friction Stark effect Atom diffraction Decoherence Close-coupling Atom Optics Cooling effect Atomic Bloch states Geometrical phase Hydrogen Atom interferometry Diffraction laser Condensats de Bose-Einstein Condensates Laser cooling of atoms High phase sensitivity Diffraction Electro-optics Atom chip Matter wave Coupled oscillators Atom inerteferometry High finesse Non reciprocal effect Atomic polarisability Birefringences Effet Zeeman Experiment Franges d'interférence Compensation Geometric phases Frequency doubling Condensat de Bose-Einstein Fringevisibility Effet Stark Axion ATOMS Collisions atome-atome Atom Interferometry Atom interferometer FIELD Topological phase He-McKellar-Wilkens Condensats Aharonov-Casher Atom interferometers Magneto-optics Electric polarizability Optical pumping High precision Cohérence Adsorbats moléculaires Détecteur à fil chaud Experimental results Phase géométrique Accurate measurement Diffraction atomique Aharononov-Bohm Parallel velocity Diode-pumped solid state lasers Interferometry Atomes froids Laser diffraction

Statistiques

Nombre de fichiers déposés

62

Nombre de notices déposées

43